\ L

TECHNICAL UNIVERSITY

OF CLUJ-NAPOCA

Faculty of Automation and Computer Science

Department of Computer Science

COMPUTER ARCHITECTURE

Introduction to Creating a VHDL Test Bench in Xilinx Vivado

COMPUTER ARCHITECTURE

Introduction to Creating a VHDL Test Bench in Xilinx Vivado
February 2021

1 Introduction

Simulation: the imitative representation of the functioning of one system or process by means of the functioning
of another (as defined by Merriam-Webster)

When it comes to electronic hardware and Hardware Description Language (HDL) models, simulators and Electronic
Design Automation (EDA) simulation tools are used to verify as to whether the Register-Transfer Level (RTL) code
meets the functional requirements of a given design’s specifications.

To achieve this, the necessary signals must be generated alongside the different states and logical input values
resulting in a waveform as an output.

It’s possible that you may not be able to properly copy-paste the code from the document, therefore a separate
GitHub Gist has been created to circumvent any issues.

The link to the UTCN Computer Architecture Test Bench supplementary code is https://gist.github.com/
fuzesa/bd6f463f4a8ce7687975eb3e43da064f

2 Basic Terminology

NOTE: When it comes to Verilog, test benches are sometimes referred to as test fiztures. Please be aware that two
terms are synonymous in concept.

DUT - Device Under Test / UUT - Unit Under Test: The given model or entity undergoing testing.

Input Stimulus: The input signal being fed into the DUT / UUT.

3 Functional vs timing simulation

Functional simulation refers to the concept of testing the underlying operational behavior of the circuit without
any consideration for delays associated with placement or routing.

In reality, these aforementioned delays could result in signals not meeting setup time and undesirable output.

Timing simulation on the other hand takes these factors into account based on the speed grade of the com-
ponent.

Within Vivado, these delays are not configured through any timing analysis tool and they must be incorporated
into the device through its design.

4 Common guidelines
— Test benches are basically a part of your project’s hierarchy and it is recommended to have them at the top level.

— Within Xilinx, the instantiated components in test benches are often labeled as UUT (Unit Under Test).

https://gist.github.com/fuzesa/bd6f463f4a8ce7687975eb3e43da064f
https://gist.github.com/fuzesa/bd6f463f4a8ce7687975eb3e43da064f

— In most cases, the same test bench should be applicable for both functional and timing simulations.

5 Simulation of a combinational logic circuit

First, we are going to implement a test bench for basic circuit with simple logic gates.

The device has three inputs, two binary for different values and a vector select control of a multiplezer (MUX).
The output of the device will be the output from the MUX

The inputs to the MUX are going to be the result of
00 — an AND gate

01 — an OR gate

10 — and lastly a XOR gate

D_| 11 S=2'b00 10
B :

RTL_AND

S=2'b01 11

S=2'b10 12

o S=default I3

RTL_OR RTL_MUX
. [1:0]

Figure 1: Sample combinational circuit

The VHDL code for the schematic above is the following:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity sample_comb_circ is
Port (A : in STD_LOGIC;
B : in STD_LOGIC;
S : in STD_LOGIC_VECTOR (1 downto 0);
0 : out STD_LOGIC);
end sample_comb_circ;

architecture Behavioral of sample_comb_circ is
begin

with S select
0 <= A and B when "00",
A or B when "O1",
A xor B when "10",
’0’ when others;

end Behavioral;

In the example above, we have named our entity as sample_comb_circ

File Edit Flow Tools Reports Window Layout View Help

=, 8 X b
Flow Navigator z
v PROJECT MANAGER

£ Settings
Add Sources
Language Templates
4 1P Catalog

v IP INTEGRATOR
Create Block Design

Open Block Design

Q- Quick Access

8 T X

PROJECT MANAGER - MuxWithTB

Sources
a = ¢ +
= Design Sources (1)
® = sample_comb_circ(Behavioral) (sample_comb_circ,vhd)
= Constraints
constrs_1
= simulation Sources (1)
v osim_1 (1)
® - sample_comb_circ(Behavioral) (sample_comb_circ.vhd)

> = Utility Sources

? 00X

Project Summary % sample_comb_circ.vhd

\TB..

Q -« ¥ BB X # ® 0
10 library IEEE;
" use 18ES.STD LOGIC_1164.ALL;

1 & entity sample_comp_circ is
; et (A 7 in §TD_L0GIC;
: = . in sTo_LOGIC;

7t S ¢ in STD_LOGIC VECTOR (1 downto 0);
:) out STB_106TE) ;

5 end sample_comb_cire;

._comb_circ. vhd

Generate Block Design 1@ architecture Behavioral of sample_comb_cire is

Run Simulation

1
1
1
1
1
v SIMULATION .
1
1
1
1

v RTL ANALYSIS

4 end Behavioral;

~ Open Elaborated Design

Report Methodology

Figure 2: A new design source has been added to the project

Next we will add a corresponding test bench to the design

First, left click on the sim_1 (1) folder within Simulation Sources and click on the plus sign (+) above Design
Sources sources to bring up the dialog.

Q- Quick Access

Window View Help

8 ¥

eSS PROJECT MANAGER - MuxWithTB

Tools Reports Layout

Sources ? 00X
Q T & |+ 0 o
v |- Design Sourc add Sources (Alt+A)

ates @ .~ sample_comb_circ(Behavioral) (sample_comb_circ.vhd)

~ [Constraints

constrs_1

~ = Simulation Sources (1)

sign v =

@ . sample_comb_circ(Behavioral) (sample_comb_circ.vhd)
n > Utility Sources
Jesign

Figure 3: Add new source file

Then select Add or create simulation sources

Add Sources

Add Sources

’
V|V£\QO This guides you through the process of adding and creating sources for your project
X tons

Add or create constraints
Add or create design sources

®) Add or create simulation sources

& XILINX.

Cancel

Figure 4: Add Sources dialog options

Then click on Create File

Add Sources

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HDL files, to add to your project. Create a new source file on disk ‘
and add it to your project.

Specify simulation set: sim_1 v

+

a4

Use Add Files, Add Directories or Create File buttons below

Add Files ‘ | Add Directories | ‘ Create File

Figure 5: Create File from Add Sources dialog

Name the file as sample_comb_circ_tb and click on the OK button.

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HDL files, to add to your project. Create a new source file on disk '
and add it to your project.

Specify simulation set: sim_1 v

+, Create Source File

Create a new source file and add it to
your project.

US File type: @ VHDL v low
File name: |sa mple_comb_circ_tb |
File location: e <Local to Project> v

N (o] |

projecr

Figure 6: Assign a name to the new file
After the file has been added to the table, click the Finish button.

Add Sources

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HDL files, to add to your project. Create a new source file on disk ’
and add it to your project.

Specify simulation set: sim_1 v
+A
Index Name Library Location
[] 1 sample_comb_circ_tb.vhd xil_defaultlib <Local to Project>
Add Files ‘ | Add Directories || Create File

| Include all design sources for simulation

(?) Finish | ‘ Cancel

Figure 7: Finish creating a new file

A new dialog window will pop-up asking you to add ports to the entity.
Simply click on the 0K button and when asked to verify, click Yes.

Define a module and specify I/O Ports to add to your source file. Define a module and specify I/O Ports to add to your source file.
For each port specified: For each port specified:
MSB and LSB values will be ignored unless its Bus column is checked. ’ MSB and LSB values will be ignored unless its Bus column is checked. '
Ports with blank names will not be written. Ports with blank names will not be written.
Module Definition Module Definitjgng
Define Module
Entity name: sampleicombicircitbl Entity name:
Architecture name: Behavioral Architecture 0 The module definition has not been changed.
Are you sure you want to use these values?
I/0 Port Definitions 1/0 Port De
+ +
Port Name Direction Bus MSB LSB Port Name Direction Bus MSB LSB
in v O in v O

Figure 8: Verify that no ports will be added to the newly created simulation file

The new simulation source file should now be included within the Simulation Sources

PROJECT MANAGER - MuxWithTB

Sources ? 00O X
Q = & + o
~ = Design Sources (1)

@ .~ sample_comb_circ(Behavioral) (sample_comb_circ.vhd)
v Constraints
constrs_1
~ = Simulation Sources (2)
v osim_1(2)
® . sample_comb_circ(Behavioral) (sample_comb_circ.vhd)
@ sample_comb_circ_tb(Behavioral) (sample_comb_circ_tb.vhd)
> Utility Sources

Figure 9: Newly created file has been added under Simulation Sources

Next we will modify the default vhd file generated from the template.

Clear the entire file (delete all the text), so that it would be clutter free and add the following code:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- No port declarations necessary
entity sample_comb_circ_tb is
end sample_comb_circ_tb;

architecture Behavioral of sample_comb_circ_tb is

-- Declare component within the scope of the test bench
COMPONENT sample_comb_circ

PORT(
A : in STD_LOGIC;
B : in STD_LOGIC;
S : in STD_LOGIC_VECTOR (1 downto 0);
0 : out STD_LOGIC
);

END COMPONENT;

-- Add the necessary input signals

signal A : STD_LOGIC := ’0’;
signal B : STD_LOGIC := ’0’;
signal S : STD_LOGIC_VECTOR(1 downto 0) := "00";

—-- Add the necessary output signals
signal 0 : STD_LOGIC;

begin

-- Instantiate the declared component
uut: sample_comb_circ PORT MAP (

A => A,
B => B,
S => 8,
0=>0

)

-- Begin combinational logic flow
stim_proc: process
begin
-- hold reset state for 100mns
wait for 100ns;

—— insert stimulus here

-- by default the MUX’s selection vector is set to "OO"
-- so the it will out put the result from the AND gate

A <= 31);
B <=1,
wait for 100mns;
A<= 17;
B <= ’0’;

wait for 100ns;

-- Set the MUX to output the result from the OR gate
S <= II01II;

A <= 107;

B <= ’1’;

wait for 100mns;

B <= Jo);

wait for 100mns;

-- and lastly the XOR gate
S <= "10";
A <= ’O’;
B <= ;1);
wait for 100mns;
A<= "1,
B <= ’0’;
wait for 100mns;
A <= ;1);
B <= ;1);
wait;

end process;

end Behavioral;

Once you have saved the file, observe that the instantiated component now appears within the test bench file.

PROJECT MANAGER - MuxWithTB

Sources ? 00O X Project Summary X | sample_comb_circ.vhd * sample_comb_circ_tb.vhd X
o = s + 0 & /home/atis/Projects/Xilinx/Vivado/MuxWithTB/MuxWithTB.srcs/sim_1/new/sample_comb_circ_tb.vhd
~ = Design Sources (1) Q - x B B X /4 B O

® = sample_comb_circ(Behavioral) (sample_comb_circ.vhd)
A : in STD_LOGIC;

& : in STD_LOGIC;
: in STD_LOGIC_VECTOR (1 downto 0);
: out STD_LOGIC

v = Constraints
constrs_1
= Simulation Sources (1) 171):
v oosim_1 (1) : END COMPONENT;

~ @ sample_comb_circ_tb(Behavioral) (sample_comb_circ_tb.vhd) -

gnal A : STD_LOGIC
gnal B : STD_LOGIC
signal S : STD_LOGIC_VECTOR (1 downto 0) := "00";

® uut : sample_comb_circ(Behavioral) (sample_comb_circ.vhd)

> Utility Sources

: STD_LOGIC;

28 | begin
uut: sample_comb_circ PORT MAP (
2 A=>na -
B =>8
s =>s
o=>0

stim_proc: process
begin

Hierarchy Libraries Compile Order

wait for 100ns;

Source File Properties 2 00 X . e f, t the c elect ect of +
® sample_comb_circ_tb.vhd - -3 A < i
| B <= 'l';
- 50 } wait for 100ns;
() Enabled st A< t1r;
52 B <= '0";
Location: Thome/atis/Proiects/Xilinx/Vivado/MuxWithTB/MuxWith TB.st 530 wait for 100ns:

Figure 10: Component has been instantiated within the simulation file

Now that we have the simulation file ready, let’s run it using Vivado’s built-in simulator.
Within the Flow Navigator on the left side, expand SIMULATION and click on Run Behavioral Simulation.

File Edit Flow Tools Reports Window Layout View Help

=, B X > W 8 T X
Flow Navigator ~3 A PROJECT MANAGER - MuxWithTB
~¥ PROJECT MANAGER
Sources
#} Settings
Q = & +

Add Sources
Design Sources (1)

Language Templates ® = sample_comb_circ(Behavioral) (sample comb_circ.vhd)

¥ 1P Catalog Constraints
constrs_1
~ IP INTEGRATOR Simulation Sources (1)
sim_1 (1)

Create Block Design
® -~ sample_comb_circ_tb(Behavioral) (sample_comb_circ_tb.
Open Block Design ® uut : sample_comb_circ(Behavioral) (sample_comb_circ.vh

Generate Block Design Utility Sources

v SIMULATION

Run Simulation

Run Behavioral Simulation

~ RTL ANAL)])]
Run Post-Synthesis Functional Simulation
v Open | Run Post-Synthesis Timing Simulation
Rel Run Post-Implementation Functional Simulation
Rej Run Post-Implementation Timing Simulation

H crhamatis

Figure 11: Click on Run Behavioral Simulation

After the simulation is complete, you will be taken to the resulting view where you can observe the signals that you
have described within your test bench. Since the default time scale isn’t for the duration of the entire simulation,
click on the Zoom Fit button (highlighted in red) to get a better view

Window Layout View Run Help
LI - 24 i« » » 10 us v|E c

SIMULATION - Behavioral Simulation - Functional - sim_1 - sample_comb_circ_tb

Scope Sources 0 [Objects ProtocolIns| 2 — O i |sample_comb_circ.vhd sample_comb_circ_tb.vhd Untitled 1
a = 2 £ Q o Q W e 1 +T
Name De... Blo... a Name Value Dat... 0
si sample VHDL E WA 1 Logic
- 999,988 ps
sample VHDL E Ws 1 Logic
9 2 Array
uoo Logic

Figure 12: Press Zoom Fit to get a better view of the signals

Observe the signals to verify that the simulation has yielded the desired results.

Figure 13: Verify the behavior of the component based on the results

6 Simulation of a sequential logic circuit

In this example, we are going to detail how to write a test bench for a circuit with a basic clock and without any
additional delays included in the clock mechanism.

e e
reset >
I s_count_reg[3:0] I
ak [>
I count[3:0]
dataz:0] [y
I__ s_count_i I
RTL_REG_SYNC
plusOp_i S=1'b1 10[3:0] I I
11
I 0[3:0] S=default 11[3:0]
10[3:0] *
I RTL_ADD I
load >I |

Figure 14: Sample sequential circuit

This is simple counter with a synchronous reset and the capability to load a pre-defined value into it. It has three
inputs, one for the clock signal, one for the reset, and another two for the loading a value.
The code for this schematic is as follows:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.STD_LOGIC_UNSIGNED.all;

entity sample_counter is

PORT (
clk : in STD_LOGIC;
reset : in STD_LOGIC;
load : in STD_LOGIC;
data : in STD_LOGIC_VECTOR (3 downto 0);
count : out STD_LOGIC_VECTOR (3 downto 0)
);

end sample_counter;

architecture Behavioral of sample_counter is
signal s_count: STD_LOGIC_VECTOR (3 downto 0);
begin

process(clk)
begin
if rising_edge(clk) then
if reset = ’1’ then
s_count <= (others => ’0’);
elsif load = ’1’ then

10

s_count <= data;
else
s_count <= s_count + ’1°;
end if;
end if;
end process;

count <= s_count;

end Behavioral;

Now, as for the test bench, here we need to pay attention to two certain details.

We would like the behavior of the clock to be independent of the rest of the functionality. One advantage of VHDL,
is that anything that’s defined as a basic process gets executed in parallel.

Therefore, we simply need to define a separate process for the clock and another one for the stimulus, just like in
the example code.

Another important thing to keep in mind is also that one control signal should be changed only in one process,
in other words avoid assigning values to signals in 2 or more processes.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity sample_counter_tb is
end sample_counter_tb;

architecture Behavioral of sample_counter_tb is

-— Add constants
constant T : time := 50 ns;

-- Declare component within the scope of the test bench
COMPONENT sample_counter
PORT (
clk : in STD_LOGIC;
reset : in STD_LOGIC;
load : in STD_LOGIC;
data : in STD_LOGIC_VECTOR (3 downto 0);
count : out STD_LOGIC_VECTOR (3 downto 0)
)3
END COMPONENT;

—-- Add the necessary input signals

signal clk : STD_LOGIC := ’0’;
signal reset : STD_LOGIC := ’0’;
signal load : STD_LOGIC := ’0’;

signal data : STD_LOGIC_VECTOR (3 downto 0) := X"D";

-- Add the necessary output signals
signal count : STD_LOGIC_VECTOR (3 downto 0);

begin
-- Instantiate the declared component
uut : sample_counter PORT MAP (

clk => clk,
reset => reset,

11

load => load,
data => data,
count => count

)

—-- continuous clock
clk_proc: process

begin
clk <= ’07;
wait for T/2;
clk <= ’1’;

wait for T/2;
end process;

-— stimuli
stim_proc: process
begin
-- hold reset for one clock cycle
reset <= ’1’;
wait for T;
reset <= ’0’;

—-- initialize the value for load
load <= ’0’;

-- wait for four cycles and then reset again
wait for 4 x* T;

reset <= ’1’;

wait for T;

reset <= ’0’;

-- wait for six cycles and then load the value in the data vector
wait for 6 x T;

load <= ’1’;
wait for T;
load <= ’0’;
wait;

end process;

end Behavioral;

After running the simulation, make sure to verify the desired output.

Figure 15: Simulation result

12

In Vivado, the default simulation time is set to 1000ns.
We are able to change that within the simulation settings.

In order to do that, first right-click on Run Simulation which can be found under Simulation within the Flow
Navigator.

I oW W 2
Flow Navigator A8 PROJECT MANAGER - CntrWithLC

v PROJECT MANAGER Sources
£+ Settings .. ﬁ
Add Sources als il Bl)

~ = Design Sources (1)

Language Templates ® . sample_counter(Bet

1F IP Catalog > |- Constraints
~ = Simulation Sources (1)
v IP INTEGRATOR v osim_1 (1)

Create Block Design v @7 sample_counter.

@ uut : sample_coL
Open Block Design

b

Utility Sources
Generate Block Design

¥ SIMULATION

Run Simula¥tiar
Simulation Settings...

v RTL ANALYSIS Reset Behavioral Simulation

> Open Elabx Reset Post-Synthesis Functional Simulation
Reset Post-Synthesis Timing Simulation

¥ SYNTHESIS Reset Post-Implementation Functional Simulation

» Run Synthi Reset Post-Implementation Timing Simulation

> Oben Svnthesized Desian ‘ I

Figure 16: Right-click on Run Simulation

13

Then within the new dialog window

(1) First click on Simulation within the Project Settings area
(2) then click on the Simulation tab

(8) lastly, modify the value for the xsim.simulate.runtime key

Settings

Simulation

Project Settings Specify various settings associated to Simulation ‘
General
Simulation Target simulator: Vivado Simulator v
Elaboration Simulator language: Mixed v
Synthesis
Implementation Simulation set: sim_1 v
Bitstream Simulation top module name: sample_counter_tb B

P Generate simulation scripts only 2

Tool Settings

Project Simulation

IP Defaults

XHub Store xsim.simulate. tcl. post -
Source File xsim.simulate.runtime 1000ns 3

Display xsim.simulate.log_all_sig...

WebTalk xsim.simulate.no_quit

Help xsim.simulate.custom_tcl

Text Editor xsim.simulate. wdb

3rd Party Simulators xsim.simulate.saif_scope

Colors xsim.simulate.saif

Selection Rules xsim.simulate.saif_all_sig...

Shortcuts xsim.simulate.add_positi...

Strategies xsim.simulate. xsim.more. .. v

Remote Hosts
xsim.simulate.runtime
Specify simulation run time

Window Behavior

",/ “ | Cancel ‘ ‘ Apply ‘ ‘ Restore...

Figure 17: Steps to modify the simulation time

When you run the behavioral simulation like previously, you can make sure that now the simulation time corresponds
to the value that has just been set.

Figure 18: Simulation with the new run time value

14

	Introduction
	Basic Terminology
	Functional vs timing simulation
	Common guidelines
	Simulation of a combinational logic circuit
	Simulation of a sequential logic circuit

