
COMPUTER ARCHITECTURE LABORATORY 03

Laboratory 03

Memory Components

1. Objectives

Design, implement and test

• Register File
• Read only Memories – ROMs
• Random Access Memories – RAMs

Familiarize the students with
• Xilinx® ISE Webpack
• Xilinx® Synthesis Technology (XST) XST User Guide

 Chapter 2: XST HDL Coding Techniques
 Chapter 6: XST VHDL Language Support

• Digilent Development Boards (DDB)
 Digilent Basys Board – Reference Manual

2. Theoretical Background

2.1. Register File

The Register file is the central storage of a Microprocessor.

Figure 1: A Register File with 2 read ports and 1 write port

 1

COMPUTER ARCHITECTURE LABORATORY 03

Most CPU operations involve using or modifying data stored in the register file.
Since the register file runs at the full speed of the processor, it must be small and
fast. The real register file is usually implemented as a small, fast SRAM memory
with multiple accesses.

A register file (specific for MIPS) has two read addresses and one write address.
The registers corresponding to the locations indicated by the two read addresses
(Read register number 1 & Read register number 2) are delivered at the two output
ports (Read data 1 & Read data 2). The data provided at the write data input port is
written in the register indicated by the write address (Write register), when the Write
control signal is asserted. The read operations are asynchronous, while the write
operation is synchronous. So the register file supports 2 reads and one write in each
clock cycle.

Appendix 4 presents a possible register file VHDL implementation.

2.2. ROMs and RAMs

Read-only memory (ROM) is a class of storage media used in computers and other
electronic devices; they allow only read operations in usual operation mode.
Random-access memory (RAM) is a form of computer data storage that takes the
form of integrated circuits and allows the stored data to be accessed in any order;
both read and write operations are permitted. These two memory types are essential
for any microprocessor.

An FPGA device comes equipped with a certain amount of BRAM (Block RAM). The
BRAM can be configured as either a ROM or a RAM. Depending on how you write
the VHDL code, XST can infer your RAM design either as a distributed memory or
directly mapped onto a Block RAM block. Distributed memories are built with
registers, while Block RAM memories are mapped to available BRAM cell.
Distributed RAMs occupy more space inside the FPGA and usually decrease the
clock cycle rate, while BRAMs provide more space for auxiliary logic inside the
FPGA. The type of inferred RAM depends on its description:

• RAM descriptions with an asynchronous read generate a distributed RAM
macro.

• RAM descriptions with a synchronous read generate a block RAM macro.

XST covers the following RAM characteristics:

• Synchronous write
• Write enable
• RAM enable
• Asynchronous or synchronous read
• Reset of the data output latches
• Data output reset
• Single, dual or multiple-port read

 2

COMPUTER ARCHITECTURE LABORATORY 03

• Single-port/Dual-port write
• Parity bits
• Block RAM with Byte-Wide Write Enable
• Simple dual-port BRAM

There are three possible modes of implementing a synchronous RAM: write-first,
read-first and no change. These modes are reflected in the behavioral description of
the RAM (VHDL code) regarding the read/write priority or order of operation. A
possible “no change” implementation is presented in appendix 5.

To Do

• Use the language templates: VHDL  Synthesis Constructs  Coding
Examples  RAM and see the differences in behavioral description between
a distributed RAM and a Block RAM.

• Use the language templates: VHDL  Synthesis Constructs  Coding
Examples  RAM  Block RAM  Single port in order to compare the read-
first and write-first implementations.

2.3. Declaring an array in VHDL

An example of declaration and initialization for an array used in ROMs, RAMs and
Register Files is presented below. First we describe an array type having N locations
of M bits each:

type <arr_type> is array (0 to N-1) of std_logic_vector(M-1 downto 0);

Next we declare a signal of the same type as the previously declared one:

signal r_name: <arr_type>;

If one implements a ROM then the signal must be initialized. Initializations for the
RAMs and Register File are also possible.

signal r_name: <arr_type> := (
“00…0”, -- M bits, use hexadecimal representation when possible
“00…1”, --
others => “00…0”
);

3. Laboratory Assignments

At this time it is mandatory to have a functional “test_env” project that resembles
with the description from the previous laboratory (laboratory 2: section 3  figure 3).
Your design must contain the 4-bit Mono Pulse Generator (MPG) and 4-digit Seven

 3

COMPUTER ARCHITECTURE LABORATORY 03

Segment Display (SSD) components instantiated in the top level entity of your
“test_env” project; here you will write the code for this laboratory.

Use View RTL Schematic after each succesful synthesis of your project. You can
also view the implemented components in the Design Summary (see laboratory 1).

3.1. ROM Implementation

Include a 256 x 16 bits ROM memory in the test_env project (do not declare a new
entity). Initialize the ROM with some arbitrarily chosen values (see 2.3). Use an 8-bit
counter to generate the addresses for the ROM. The counter is controlled by the
MPG component. The contents of the ROM is displayed on the Seven Segment
Display. The behavior of the ROM is asynchronous – use only one line of code. The
design is depicted in the figure below:

Figure 2: Simple ROM design

Test on the Basys board!

3.2. Register File Implementation

Do not delete the previously written code! Use comments if necessary!

Design and implement a 16x16 bit Register File on the Basys board (use a new
component for the register file, in the “test_env” project). Initialize the Register File
with some values. The design is presented in Figure 3.

Figure 3: Simple Register File Design

 4

COMPUTER ARCHITECTURE LABORATORY 03

Use a counter to generate the read and write address of the Register File. The
counter is controlled by a MPG component. The outputs of the Register File are
added together; the result of addition is displayed on the Seven Segment Display
and written back to the Register File. You have to use another output of the MPG
component to enable the write signal of the Register File (RegWr). The design
should resemble a multiply by 2 circuit (a + a = 2a).

Add a synchronous reset mechanism for the counter that generates the Register
File’s address such that after going through a few of the Register File’s locations you
can reset the address counter (return to address 0) and check that the written results
in Register File are correct.

Test on the Basys board!

Add some auxiliary components/elements to the design in order to use only one
button for the counter increment and RegWr signal. The new circuit should work in
the same manner (the results should be the same as in the previous case) and you
must see the correct results of addition on the seven segment display.

You can add the necessary circuit in order to display all the intermediate signal
values on the SSD (Hint: use switches).

Test on the Basys board!

3.3. RAM Design

Replace the Register File previously designed with a RAM memory. Use a shift left 2
operation instead of the addition (figure 3, shift is implemented with concatenation).
Use only one address for the RAM. Use a write-first mode of implementation.

4. References

• XST User Guide, Chapter 2: XST HDL Coding Techniques
• XST User Guide, Chapter 6: XST VHDL Language Support
• XAPP463 (v2.0) March 1, 2005 Using Block RAM in Spartan-3 Generation

FPGAs
• Digilent Basys Board – Reference Manual

 5

COMPUTER ARCHITECTURE LABORATORY 03

Appendix 3 – Register File Implementation

entity reg_file is

port (
clk : in std_logic;
ra1 : in std_logic_vector (2 downto 0);
ra2 : in std_logic_vector (2 downto 0);
wa : in std_logic_vector (2 downto 0);
wd : in std_logic_vector (7 downto 0);
wen : in std_logic;
rd1 : out std_logic_vector (7 downto 0);
rd2 : out std_logic_vector (7 downto 0)

);
end reg_file;

architecture Behavioral of reg_file is

type reg_array is array (0 to 7) of std_logic_vector(7 downto 0);
signal reg_file : reg_array;

begin

process(clk)
begin

if rising_edge(clk) then
if wen = '1' then

reg_file(conv_integer(wa)) <= wd;
end if;

end if;
end process;

rd1 <= reg_file(conv_integer(ra1));
rd2 <= reg_file(conv_integer(ra2));

end Behavioral;

 6

COMPUTER ARCHITECTURE LABORATORY 03

Appendix 4 – RAM Implementation – no change

entity rams_no_change is
 port (clk : in std_logic;
 we : in std_logic;
 en : in std_logic;
 addr : in std_logic_vector(5 downto 0);
 di : in std_logic_vector(15 downto 0);
 do : out std_logic_vector(15 downto 0));
end rams_no_change;

architecture syn of rams_no_change is

 type ram_type is array (0 to 63) of std_logic_vector (15 downto 0);
 signal RAM: ram_type;
begin

 process (clk)
 begin
 if clk'event and clk = '1' then
 if en = '1' then
 if we = '1' then
 RAM(conv_integer(addr)) <= di;
 else
 do <= RAM(conv_integer(addr));
 end if;
 end if;
 end if;
 end process;
end syn;

 7

	Memory Components
	1. Objectives
	2. Theoretical Background
	3. Laboratory Assignments
	4. References

