
COMPUTER ARCHITECTURE LABORATORY 8

46

Laboratory 8

8. Single-Cycle MIPS CPU Design (5): 16-bits
version – One clock cycle per instruction

8.1. Objectives

Study, design, implement and test

 Memory Unit for the 16-bit Single-Cycle MIPS CPU
 Write Back Unit for the 16-bit Single-Cycle MIPS CPU
 Other necessary connections for branch / jump address computation
 Test the Single-Cycle MIPS CPU

Familiarize the students with

 Single-Cycle CPU design: Defining the instructions / writing the test program
(MIPS assembly language, machine code)

 Xilinx® ISE WebPack
 Digilent Development Boards (DDB)
 Digilent Basys Board – Reference Manual
 Digilent Basys 2 Board – Reference Manual
 Digilent Basys 3 Board – Reference Manual

8.2. Reduced Size MIPS Processor Description

(!) Read Lectures 3 and 4 in order to understand the works needed in this laboratory.

Remember that an instruction execution cycle (lecture 4) has the following phases:

 IF – Instruction Fetch
 ID/OF – Instruction Decode / Operand Fetch
 EX – Execute
 MEM – Memory
 WB – Write Back

Your own Single-Cycle MIPS 16 processor implementation (that you will continue and
hopefully finish in this laboratory) will be partitioned in 5 (five) components (new
entities). These components will be declared and instantiated in the “test_env” project.

COMPUTER ARCHITECTURE LABORATORY 8

47

The utility of this implementation will be understood in the future laboratories, when
you will implement the pipeline version of your 16-bit MIPS processor!
In this laboratory you will design, VHDL description, implement and test the Memory
Unit, Write Back Unit and the rest of the connections of your own single cycle MIPS
16 processor.

The data-path of the processor (32-bit version), including the control unit and the
necessary control signals, is presented in the next figure. In order to reduce the
complexity of the data-path, the control signals were not explicitly connected, but
rather they can be easily identified by their names.

Figure 8-1: MIPS 32 Single-Cycle Data-Path + Control

As a reminder, the instruction formats for your MIPS 16 processor are presented
below:

Figure 8-2: R-type Instruction format

Figure 8-3: I-type Instruction format

Figure 8-4: J-type Instruction format

COMPUTER ARCHITECTURE LABORATORY 8

48

The Memory Unit consist in the following component
 Data Memory

The data-path of the Memory Unit is presented in Figure 8-5.

Figure 8-5: Memory Unit Data-Path for MIPS 32

The Data Memory is a RAM with asynchronous read and synchronous write
operations. A similar RAM implementation (with synchronous read) was done in
laboratory 3.

The inputs of the Memory Unit:

 The clock signal (for the Data Memory Writes)
 32-bit ALURes signal – consists in the address for the Data Memory
 32-bit RD2 signal – the second output of the Register File (used only for store

word instructions) is the Write Data field for the Data Memory
 MemWrite control signal

The outputs of the Memory Unit:

 32-bit MemData, the Read Data from the Data Memory (used only for load word
instructions).

 32-bit ALURes, this signal is also the result of the arithmetic-logical instructions
that must be stored in Register File, so it is also fed as output for the Memory
Unit and input to the Write Back Unit.

The only control signal present in this stage is the MemWrite Control Signal.

 MemWrite = 0 Nothing is written in the Data Memory.
 MemWrite = 1 The RD2 signal is written in the Data Memory at the

address indicated by the ALURes signal.

The Write Back unit is simply the last multiplexor from Figure 8-1. The rest of the
components are the AND gate for generating the PCSrc control signal, the jump
address computation.

The control signal for the Write Back multiplexor is MemtoReg and identifies what
value is fed to the Write Data port of the Register File in the ID state:

COMPUTER ARCHITECTURE LABORATORY 8

49

 MemtoReg = 0 the ALURes signal is the input to the Write Data port of
the Register File.

 MemtoReg = 1 the MemData is the input to the Write Data port of the
Register File.

The PCSrc signal identifies if the current instruction is a Branch instruction and if the
content of the rs and rt registers are the same; i.e. RF[rs] == RF[rt].

PCSrc <= Branch and Zero;

8.3. Laboratory Assignments

Read carefully and completely each activity before you begin!

Prerequisites:

 All the assignments from the laboratories 4, 5, 6, 7 completed
 The instruction fetch unit implemented and tested on the Digilent Development

Board.
 The instruction decode unit implemented and tested on the Digilent

Development Board.
 The instruction execute unit implemented and tested on the Digilent

Development Board
 The memory unit implemented and tested on the Digilent Development Board
 Xilinx project with “test_env” including the IF, ID, EX, MEM units (Laboratory 7

Assignment 7.3.3)

Attention: If the homework from the previous laboratories is not completed, you will
receive a 1 for this and all future laboratories until the homework is done without the
possibility of any corrections to the mark!

8.3.1. Memory Unit Design

Describe a new component (new entity) for the Memory Unit. Use the RAM
implementation from laboratory 3 and change the read operation to an asynchronous
one. Write only with processes inside the Memory Unit.

Instantiate the Memory Unit in the “test_env” project. Connect all the signals from the
Memory Unit in the data-path. The MemWrite signal should be validated with an output
of the MPG component as it was previously implemented for the writing in the Register
File (RegWrite signal).

8.3.2. Adding the Write Back Unit and the jump address computation

Add the write back multiplexor for your own MIPS processor. Use only one line of code
to implement this multiplexor.

COMPUTER ARCHITECTURE LABORATORY 8

50

Complete your own MIPS processor implementation with the jump address
computation and the PCSrc signal computation. Complete all the necessary
connections for the data-path as in Figure 8-1 (jump address, branch target address,
write back in the register file, etc.).

Test the LW, SW, BEQ and Jump Instructions for your MIPS processor.

8.3.3. Testing it ALL: You own Single-Cycle MIPS 16 processor

At this moment, you should have all the components form the data-path implemented
in the “test_env” project.

All the signals present on the data-path must be connecting to the SSD, i.e. the outputs
of the IF, ID, EX, M and WB units. Use switches in order to control the display on the
SSD (multiplexor):

 sw(7:5) = 000 display the instruction on the SSD
 sw(7:5) = 001 display the next sequential PC (PC + 1 output) on the SSD
 sw(7:5) = 010 display the RD1 signal on the SSD
 sw(7:5) = 011 display the RD2 signal on the SSD
 sw(7:5) = 100 display the Ext_Imm signal on the SSD
 sw(7:5) = 101 display the ALURes signal on the SSD
 sw(7:5) = 110 display the MemData signal on the SSD
 sw(7:5) = 111 display the WD signal on the SSD

On the LEDs, you will display the control signals from the Main Control Unit. You have
8 x 1-bit control signals and ALUOp. Use another switch to control the display on the
LEDs:

 sw(0) = 0 Display the 1-bit control signals on the LEDs. The order of the
control signals is your own choice.

 sw(0) = 1 Display the n-bit ALUOp signal on the LEDs (the rest of LEDs
will have the value ‘0’ for now)

If needed for debugging the processor on the Digilent Development Board you can
additionally display other signals on the SSD / LEDs: branch target address, jump
address, ALUCtrl, etc.

Now trace your program on the Digilent Development Board instruction by instruction.
Be sure that all the control signals / data fields are correct.

Present your Single-Cycle MIPS implementation to your TA.

8.4. References

[1] Computer Architecture Lectures 3 & 4 slides.

COMPUTER ARCHITECTURE LABORATORY 8

51

[2] D. A. Patterson, J. L. Hennessy, “Computer Organization and Design: The
Hardware/Software Interface”, 5th edition, ed. Morgan–Kaufmann, 2013.
[3] D. A. Patterson and J. L. Hennessy, “Computer Organization and Design: A
Quantitative Approach”, 5th edition, ed. Morgan-Kaufmann, 2011.
[4] MIPS® Architecture for Programmers, Volume I-A: Introduction to the MIPS32®
Architecture, Document Number: MD00082, Revision 5.01, December 15, 2012
[5] MIPS® Architecture for Programmers Volume II-A: The MIPS32® Instruction Set
Manual, Revision 6.02
[6] MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-
Specific Extension to the MIPS32™ Architecture, Revision 2.62.
 Chapter 3: The MIPS16e™ Application-Specific Extension to the MIPS32®

Architecture.

