
COMPUTER ARCHITECTURE                                                     LABORATORY 10 
 

 
 

Laboratory 10 
 

Pipeline MIPS CPU Design: 16-bits version 
 

 
 

1. Objectives 
 
Study, design, implement and test  

• MIPS 16 CPU, pipeline version with the modified program without hazards 
 

Familiarize the students with  
• Pipeline CPU design  
• Xilinx® ISE Webpack  
• Digilent Development Boards (DDB) 

 Digilent Basys Board – Reference Manual 
 
 

2. Transforming the MIPS 16 Single-Cycle CPU to a Pipeline CPU 
 
! You must attend/read lecture 8 in order to fully understand the Pipeline CPU 
 
Remember that an instruction execution cycle (lecture 4) has the following phases:  
 

• IF   –  Instruction Fetch 
• ID/OF   –  Instruction Decode / Operand Fetch 
• EX   –  Execute  
• MEM   –  Memory  
• WB   –  Write Back 

 
The data-path of the single-cycle processor (32-bit version), including the control unit 
and the necessary control signals, is presented in the next figure. In order to reduce 
the complexity of the data-path the control signals were not explicitly connected, but 
rather they can be easily identified by their names.  
 

 1 



COMPUTER ARCHITECTURE                                                     LABORATORY 10 
 

 
Figure 1: MIPS 32 Single-Cycle Data-Path + Control 

 
 
The main issue with the single-cycle MIPS CPU is the length of the critical path, for 
the load word instruction (see lecture 04). The necessary time for transmitting the data 
along the critical path must be covered by the clock cycle time. This results in a long 
cycle time (slow clock).  
 
In order to reduce the clock cycle time, the solution is to partition the data-path along 
the critical path with rising edge triggered registers (D flip-flops). These registers are 
inserted between the MIPS 32 functional units that coincide with the instruction 
execution phases: IF, ID, EX, MEM, WB. In this manner, one can simultaneously 
execute at most 5 instructions, each of them executing one of the five execution 
phases. The pipeline execution units are also referred to as stages. 
 
The data-path together with the control unit for the pipelined MIPS 32 CPU is 
presented in Figure 2. 
 
Each intermediate register will be referred depending on its position between the 
pipeline stages. The register between the IF stage and the ID stage is IF/ID, the one 
between ID and EX is ID/EX, etc.  
 
The role of these intermediate registers is to hold the intermediate results of the 
instruction execution in order to provide these results to the next stage, in the next 
clock cycle. 
 
Furthermore, the execution on the data-path depends on the control signals values, 
which are specific for each instruction. So, through the intermediate registers (starting 

 2 



COMPUTER ARCHITECTURE                                                     LABORATORY 10 
 

with the ID/EX register) the control signals will also be provided for the next stages. 
The control signals are symbolically grouped after the stage name where they belong. 
 
The control signals are transmitted together with the intermediate results until the 
stages where they are needed. 
 

 

Figure 2: MIPS 32 Pipeline Data-Path + Control, obtained from the partitioning of the 
Single-Cycle Data-Path 

 
Lecture 08 explains in more detail the design of the pipeline CPU, the details 
presented so far represent the necessary knowledge for transforming your own MIPS 
16 single-cycle CPU into a pipeline one. 
One notable difference between the two data-paths is that the multiplexer used for 
selecting the write address for the Register File is placed in EX, not in ID as in the 
single-cycle CPU case. There are 2 possible solutions:  
 

a) Leave it in the ID stage. In this case the RegDst signal will not be transmitted 
through ID/EX and will be connected directly from the control unit.  

b) Move it to the EX stage, modifying the input / output ports of the ID and EX 
units, and transmit the RegDst signal according to the presented pipeline data-
path.  

 
Observation: The MemRead signal will be ignored, as in the single-cycle case.  
 
 

 3 



COMPUTER ARCHITECTURE                                                     LABORATORY 10 
 

3. Hazards in MIPS 
 
Hazards are situations in which an instruction cannot be executed in the next clock 
period. The hazard can be classified as:  

1. Structural Hazards (resource dependency) 
o 2 instructions try to use the same resource simultaneously for different 

purposes  resource constraints  
2. Data Hazards (data dependency) 

o Attempt to use data before it is ready (available) 
o For an instruction in the ID phase, the operands might still be processed in 

other pipeline stages 
3. Control Hazards (condition and control dependency) 

o The branch decision and branch target address are not known until the MEM 
stage. The jump address is computed in the ID stage.  

o Pipelining of jumps, branches and other instructions that modify the sequential 
flow of the program  

These hazards have been thoroughly presented during lecture 8 (you are encouraged 
to read them!). Optimal solutions (in hardware) are relying on forwarding and stalling 
the pipeline (see the lecture notes for reference). For your MIPS 16 pipeline 
implementation you should implement the software solution, modifying your program 
such that the data and control hazards are avoided.  

The basic change in your program should be the following: introduce NoOp (No 
Operation) instructions between the instructions where the hazard exists. 

NoOp instruction should not change anything in your processor (ex. sll $0, $0, 0; add 
$0, $0, $0, etc.) 
 
 

3.1. Structural Hazards 
 
Structural hazards occur when instructions from two different pipeline stages are trying 
to use the same resource in the same cycle. 
 
Special attention should be given to the structural hazard that can occur when two 
instructions at distance of 3 are using the same register (from the RF). In the following 
example, we presume that instr1 and instr2 do not have hazard with other instructions. 
 

Structural hazard at RF 
add $1, $1, $2 
instr1 
instr2 
add $3, $1, $4 

 

 4 



COMPUTER ARCHITECTURE                                                     LABORATORY 10 
 

Pipeline diagram (in each clock cycle we present the pipeline stage for each 
instruction): 
 
Instr\Clk CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 … 
add $1, $1, $2 IF ID EX MEM WB     
instr1  IF ID EX MEM WB    
instr2   IF ID EX MEM WB   
add $3, $1, $4    IF ID EX MEM WB  

 
During clock cycle CC5, the new value of $1, generated by the first instruction, is in 
WB stage, being unwritten yet in RF. Therefore, in ID stage, the 4th instruction will 
read the old value of $1, in cycle CC6 EX receiving the incorrect value. 
 
There are 2 possible solutions: 
 

1. Recommended: Modify RF block such that the writing is done in the middle of 
the clock cycle (test the falling edge – clk = 0 & clk’event). In this case, the RF 
read (being asynchronous), in the second part of CC5 the correct value of $1 
occurs and it is propagated forward to EX at CC5-CC6 transition.  

2. Introduce a NoOp instruction 
 

Without Hazard 
add $1, $1, $2 
instr1 
instr2 
NoOp 
add $3, $1, $4 

 
Attention! In the following it is assumed that you have chosen the 1st option. 
Otherwise, introduce an extra NoOp where necessary. 
 
 

3.2. Data Hazards 
 

Data hazards (Read After Write or Load Data Hazard) occur when the current 
instruction use as source(s) the register that will be written by other instructions that 
are still executing in the pipeline.  
 
(!) In order to establish where these hazards occur you need to draw the pipeline 
diagram and to understand how pipelining is done (when operands are read). 
 
The following example contains most of the data hazards that might occur in your 
pipelined MIPS. 
 
 
 

 5 



COMPUTER ARCHITECTURE                                                     LABORATORY 10 
 

Instr. Nr. Program 
1 add $1, $2, $3 
2 add $3, $1, $2 
3 add $4, $1, $2 
4 add $5, $3, $2 
5 lw    $3, 5($5) 
6 add $4, $5, $3 
7 sw   $3, 6($5) 
8 beq $3, $4, -6 

 
Hazard identification process is solved with NoOp insertions, starting from first 
instruction to the last one. Example: 
 
Instr\Clk CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 
add $1, $2, $3 IF ID EX MEM WB($1)     
add $3, $1, $2  IF ID($1) EX MEM WB($3)    
add $4, $1, $2   IF ID($1) EX MEM WB   
add $5, $3, $2    IF ID($3) EX MEM WB($5)  
lw    $3, 5($5)     IF ID($5) EX MEM WB($3) 

 
Instr\Clk CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11 … 
add $5, $3, $2 IF ID($3) EX MEM WB($5)     
lw    $3, 5($5)  IF ID($5) EX MEM WB($3)    
add $4, $5, $3   IF ID($3, $5) EX MEM WB($4)   
sw   $3, 6($5)    IF ID($3) EX MEM WB  
beq $3, $4, -6     IF ID($4) EX MEM WB 

 
Hazards are solved iteratively, starting from the first occurrence. Solving a hazard 
between 2 successive instructions implicitly solves the hazards between the first 
instruction and the instruction at distance +2. Example: between instruction 1 and 2, 
and 1 and 3, there is a RAW hazard (after $1). Hazard between 1 and 2 is solved first, 
delaying instruction 2 with 2 cycles (it should have ID on cycle CC5) => 2 NoOp. 
Therefore, all following instructions will be delayed with 2 cycles, so the hazard 
between 1 and 3 is also resolved. 
 
Between instructions 2 and 4 there is a RAW hazard, after $3, which can be solved 
by delaying with 1 cycle, inserting a NoOp after 2 or before 4. 
 
All other hazards are being solved, resulting the following program: 
 
 
 
 
 
 

 6 



COMPUTER ARCHITECTURE                                                     LABORATORY 10 
 

Instr. Nr. Program 
1 add $1, $2, $3 
2 NoOp 
3 NoOp 
4 add $3, $1, $2 
5 NoOp 
6 add $4, $1, $2 
7 add $5, $3, $2 
8 NoOp 
9 NoOp 

10 lw    $3, 5($5) 
11 NoOp 
12 NoOp 
13 add $4, $5, $3 
14 NoOp 
15 sw   $3, 6($5) 
16 beq $3, $4, -6 

 
 

3.3. Control Hazards 
 
Control hazards occur at instructions that alter the sequential flow of the program, 
when the next sequential instructions that follow (3 for BEQ and 1 for J) are implicitly 
executed. 
 
For conditional jump instructions (beq, bne, etc.), the next 3 instructions will implicitly 
be executed, being already in the pipeline. Therefore, a simple (but not efficient) 
solution is to insert 3 NoOp’s.  
 
For unconditional jumps (j, jal, etc.), based on the data-path from Figure 2, these 
instructions are computing the jump address (and writing it in the PC register) in the 
ID stage. It means that only next instruction starts the execution, so one NoOp needs 
to be inserted after the j instruction. A better solution would be to insert the instruction 
that is after j before it, with condition that this instruction is not also a jump instruction 
(j, beq, etc.) 
 
 

4. Laboratory Assignments  
 
 
Read carefully and completely each activity before you begin! 
 
Prerequisites: 

• Xilinx project with “test_env” including the complete and correct implementation 
of the pipeline MIPS 16 CPU.  

 

 7 



COMPUTER ARCHITECTURE                                                     LABORATORY 10 
 

4.0. Verify the MIPS 16 Pipeline CPU design 
 
You can evaluate the critical path by checking the clock frequency: Go to Processes 
 Design Summary/Reports. Open Detailed Reports  Synthesis Report and 
watch the section related to clock signal. 
 
You should notice an increase in frequency (of 30-50%) caused by the pipelining of 
your MIPS (compared to the one observed in laboratory 9). One can observe that the 
increase in speed is not proportional to the number of pipeline stages. There is a 
multitude of reasons for that: stages are not balanced, the resulting circuit depends 
on the board’s technology, the memories are implemented as distributed RAMs, etc.   
 

4.1. Program analysis and hazard removal (paper and pencil) 
 

Based on the example in section 3, identify the hazards in your program. Insert NoOp 
instructions where such an instruction is needed. Draw the pipeline diagram for at 
least 5 successive instructions in your program (for all, if there are not any hazards). 
 
Note: By introducing the NoOp’s you will need to adjust the addresses for the jump 
instructions in your program. 
 
Modify the (assembly) program in the instruction memory  
 
 

4.2. Test and evaluate the MIPS 16 pipeline  
 
Test your design on the FPGA board. You have 2 options: 
 

a. If your pipeline implementation was correct, without any mapping mistakes etc., 
then watching your final results is enough (results should be identical with your 
single cycle implementation). 

b. If the results are different, then you should trace your program step by step.  
 
Use the same display procedure as the one used for your single-cycle MIPS (with the 
multiplexor on switches for selecting different data to be displayed on the SSD). It is 
important to understand that now your outputs (for your switches configuration) will 
not be the same as in the single-cycle implementation. You have 5 instructions in the 
pipeline, some of them will be NoOp.  
 
You can display the control signals on the LEDs. Use the delayed control signals, i.e. 
the control signals where necessary. 
 
If necessary, display other signals/change the displayed signals, from different stages, 
on the SSD. 
 

 8 



COMPUTER ARCHITECTURE                                                     LABORATORY 10 
 

4.3. Hardware optimizations for the MIPS Pipeline CPU (optional) – only 
for ChAmpions.  

 
If you have finished and tested your MIPS pipeline CPU, you can modify your solution 
in order to implement the following components of the complete pipeline processor:  
 

a. Hazard detection unit 
b. Forwarding unit 
c. Move the branch in the ID stage 
d. Hardware stalls for the LW (RAW hazard), BEQ and J instructions. 

 
In the end you should have complete pipeline implementation, as it is presented in the 
lecture material.  
 
 

5. References 
 

• Computer Architecture Lectures 3 & 4 & 8 slides. 
• MIPS® Architecture For Programmers, Volume I-A: Introduction to the 

MIPS32® Architecture, Document Number: MD00082, Revision 5.01, 
December 15, 2012 

• MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction 
Set Manual, Revision 6.02 

• MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ 
Application-Specific Extension to the MIPS32™ Architecture, Revision 2.62. 
 Chapter 3: The MIPS16e™ Application-Specific Extension to the 

MIPS32® Architecture. 
 

 9 


	Pipeline MIPS CPU Design: 16-bits version
	1. Objectives
	2. Transforming the MIPS 16 Single-Cycle CPU to a Pipeline CPU
	3. Hazards in MIPS
	Structural hazard at RF
	Without Hazard
	Program
	Instr. Nr.
	Program
	Instr. Nr.
	4. Laboratory Assignments
	5. References

