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Finite State Machines and Serial Communication 
 
 
 

1. Objectives 
 
Study, design, implement and test  

• Finite State Machines 
• Serial Communication 

 
Familiarize the students with  

• Xilinx® ISE Webpack 
• Digilent Development Boards (DDB) 

 Digilent Basys Board – Reference Manual 
 
 

2. Theoretical Background 
 
 

2.1. Finite State Machines 
 

A finite state machine or FSM is a model of behavior composed of a finite number 
of states, transitions between those states, and actions. A finite state machine is used 
to describe an abstract model of a control unit. XST proposes a large set of templates 
to describe FSMs. By default, XST tries to distinguish FSMs from VHDL or Verilog 
code, and apply several state encoding techniques to obtain better performance or 
less area.  
 
XST supports the following state encoding techniques: 
 

• Auto – the best suited encoding algorithm for each FSM. 
• One-hot – associate one code bit and one flip-flop per state. At a given clock 

cycle during operation, one and only one bit of the state variable is asserted. 
Only two bits toggle during a transition between two states. One-hot encoding 
is appropriate with most FPGA targets where a large number of flip-flops are 
available. It is also a good alternative when trying to optimize speed or to 
reduce power dissipation. 

• Gray – guarantees that only one bit switches between two consecutive states. 
It is appropriate for controllers exhibiting long paths without branching. In 
addition, this coding technique minimizes hazards and glitches. Very good 
results can be obtained when implementing the state register with T flip-flops. 

 1 



COMPUTER ARCHITECTURE                                                     LABORATORY 11 
 

• Compact – consists of minimizing the number of bits in the state variables and 
flip flops. Compact encoding is appropriate when trying to optimize area. 

• Johnson – like Gray, it shows benefits with state machines containing long 
paths with no branching. 

• Sequential – consists of identifying long paths and applying successive radix 
two codes to the states on these paths. Next state equations are minimized. 

• Speed1 – oriented for speed optimization. The number of bits for a state 
register depends on the particular FSM, but generally it is greater than the 
number of FSM states. 

• User – original encoding, specified in the HDL file. 
 

 
Figure 1: FSM Representation Incorporating Mealy and Moore Machines 

 
When describing a finite state machine in VHDL you may have several processes 

(1, 2 or 3) depending upon how you consider and decompose the different parts of the 
preceding model. Appendix 7 describes the VHDL finite state machine 
implementations.  
 
 

2.2. Serial Communication – UART  
 
Serial communication is basically the transmission or reception of data one bit at a 
time. Today's computers generally address data in bytes or some multiple thereof. A 
serial port is used to convert each byte to a stream of ones and zeroes as well as to 
convert streams of ones and zeroes to bytes. The serial port contains an electronic 
chip called a Universal Asynchronous Receiver/Transmitter (UART) that actually does 
the conversion. Serial transmission of digital information (bits) through a single wire or 
other medium is much more cost effective than parallel transmission through multiple 
wires.  
 
When transmitting a byte, the UART first sends a START BIT followed by the data 
(general 8 bits, but could be 5, 6, 7, or 8 bits), followed by STOP BITs. The sequence 
is repeated for each byte sent. 

 
Figure 2: Serial Transmission Timing Diagram 
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Serial transmission does not involve a clock signal. The information is included in the 
baud rate (number of bits per second). Common baud rates are 2400, 4800, 9600 
and 19200. This means that a bit transmitted through the serial line is valid for a given 
time period (the inverse of the baud rate).  
 
The start bit is always 0, the data bits are transmitted with the LSB (least significant 
bit) first and MSB (most significant bit) last and the stop bit is always 1. In serial 
communication the stop bit duration can have multiple values: 1, 1.5 or 2 bit periods 
in length. Besides the synchronization provided by the use of start and stop bits, an 
additional bit called a parity bit may optionally be transmitted along with the data. A 
parity bit affords a small amount of error checking, to help detect data corruption that 
might occur during transmission. One can choose even parity, odd parity, mark parity, 
space parity or none at all. When even or odd parity is being used, the number of 
marks (logical 1 bits) in each data byte is counted, and a single bit is transmitted 
following the data bits, to indicate whether the number of 1 bits just sent is even or 
odd. 
 
The data sent through serial communication is encoded using ASCII codes (Appendix 
8). Assume we want to send the letter 'A' over the serial communication channel. The 
binary representation of the letter 'A' is 01000001 (41h). Remembering that bits are 
transmitted from least significant bit (LSB) to most significant bit (MSB), the bit stream 
transmitted would be as follows for the line characteristics 8 bits, no parity, 1 stop bit, 
9600 baud: LSB (0 1 0 0 0 0 0 1 0 1) MSB. This represents (Start Bit) (Data Bits) (Stop 
Bit). For a binary two-level signal, a data rate of one bit per second is equivalent to 
one Baud. To calculate the actual byte transfer rate simply divide the baud rate by the 
number of bits that must be transferred for each byte of data. In the case of the above 
example, each character requires 10 bits to be transmitted for each character. As 
such, at 9600 baud, up to 960 bytes can be transferred in one second. 
  

 
Figure 3: Serial Transmission Example (7 data bits) 
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For accurate serial communication, on the receiving end, an oversampling scheme is 
commonly used to locate the middle position of the transmitted bits, i.e., where the 
actual sample is taken. The most common oversampling rate is 16 times the baud 
rate. Therefore, each serial bit is sampled 16 times but only one sample is saved.  
 
Each UART contains a shift register which is the fundamental method of conversion 
between serial and parallel forms. 
 
 

3. Laboratory Assignments  
 

3.1. Pmod USB-UART 
 
Read the Pmod USB-UART reference manual. The figure below shows the connection 
of the USB-UART peripheral module to the FPGA board.  
 

 
Figure 4: Pmod USB-UART connection to the FPGA board 

 
Use the USB-Mini USB cable to power the board and the USB-Micro USB cable for serial data 
communication. 
 
Download and open the HTERM terminal program. Alternatively you can use the 
hyper terminal software available in windows XP.  
 
You need to define the RX (input) and TX (output) ports into your “test_env” project 
and in the UCF file. Use your board’s reference manual to locate the correct pin 
numbers. Attention: The TX of the FPGA board is the RX of the Pmod USB-UART 
module and the RX of the FPGA board is the TX of the Pmod USB-UART module. 
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3.2. Serial Transmit FSM 

 
Design a baud rate generator that would ensure a 9600 baud rate (9600 bits per 
second) communication over the serial cable. Use a counter to generate the 
BAUD_ENable signal (generate a ‘1’ every bit time interval).  
 
Baud rate generation: 

• For 25 MHz, clock period ~40 ns, input clock must be divided by 2604. 
• For 50 MHz, clock period ~20 ns, input clock must be divided by 5208. 
• For 100 MHz, clock period ~10 ns, input clock must be divided by 10416. 

 
Define a new entity for the transmission FSM. The next figure presents the ports of 
this entity.  
 

 
Figure 5: TX_FSM Entity Description 

 
The detailed FSM implementation is presented in the figure below. A state transition 
is triggered only in the clock cycle when BAUD_ENable is ‘1’. This ensures that a bit 
will be valid for the baud rate period. The BIT_CNT is a signal with the functionality of 
a counter inside the FSM; it holds the current transmitting bit value. It should be 
incremented in the bit state and should be reset after each serial transfer (you can do 
that in the idle state, or in all states except the bit state).   

 
Figure 6: TX_FSM Implementation 
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Write the VHDL code and implement in the “test_env” project the TX_FSM state 
machine. Use a FSM with 2 or 3 processes (see appendix 7).  Test the communication 
between the FPGA board and the PC. The parameters of the serial communication 
are: 1 start bit, 8 data bits, 1 stop bit, no parity bit, 9600 baud rate. Make sure that 
these settings are also configured in the HTERM / hyper terminal application.  
 
In order to test the serial transmission from the FPGA board to the PC, connect the 
TX_DATA input to the switches, the TX_EN signal to a MPG enable, RST to ‘0’ or 
another MPG enable. Make sure that the switches show a valid ASCII code.  
 
Define the correct methodology of asserting the TX_EN signal in order to initiate a 
single serial data transfer (use a D flip-flop with a set and a reset). 
 

3.3. I/O from the MIPS CPU 
 
Connect the TX_FSM into your own MIPS processor implementation. At this point you 
are allowed to use your finished and complete processor (single-cycle or pipeline).  
 
You have to send 16-bits of data from your MIPS processor to the PC. Depending on 
the result of your program define what field you will send (register with the final result, 
memory location, etc.). 
 
Example:  
When your program has finished execution the result is in R7 and the PC is 0x0020. 
Add a new instruction to your program: addi R7, R7, 0. Define a 16-bit register whose 
value will be written from the RD1/ALURes signal, write it in this register (write enable 
with the value of the PC) and initiate the serial transfer.  
 
Remember that when sending over the serial line the 8-bits represent an ASCII 
character, hence you are required to make 4 transfers in order to send the 
alphanumerical encoding of the 4 x 4-bit hexadecimal value (use a decoder/ROM to 
generate the 8-bit ASCII representation for a hexadecimal value).   
 
Define the methodology to send the 16-bit data over the serial line. Use the TX_RDY 
signal to control the 4 serial transfers.  
 
 

4. References 
 

• XST User Guide 
• Digilent Basys Board – Reference Manual 
• Digilent Pmod USB-UART – Reference Manual  
• http://www.asciitable.com/  
• http://www.der-hammer.info/terminal/  
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Appendix 7 – Finite State Machine Implementations  
 

 
Figure 7: Finite State Machine Example 

 
IO Pins Description 
clk Positive Edge Clock 
reset Asynchronous Reset (Active High) 
x1 FSM Input 
outp FSM Output 

Table 1: FSM Pin Descriptions 
 
FSM with One Process VHDL Coding Example 
 
entity fsm_1 is 

port ( 
clk, reset, x1  : IN std_logic; 
outp   : OUT std_logic 

); 
end entity; 
 
architecture beh1 of fsm_1 is 

type state_type is (s1,s2,s3,s4); 
signal state : state_type ; 

begin 
 

process (clk,reset) 
begin 

if (reset ='1') then 
state <=s1; 
outp<='1'; 

elsif (clk='1' and clk'event) then 
case state is 

when s1 =>  if x1='1' then 
state <= s2; 
outp <= '1'; 
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else 
state <= s3; 
outp <= '0'; 

end if; 
when s2 =>  state <= s4;  

outp <= '0'; 
when s3 =>  state <= s4; 

outp <= '0'; 
when s4 =>  state <= s1; 

outp <= '1'; 
end case; 

end if; 
end process; 

 
end beh1; 
 
FSM with Two Processes VHDL Coding Example 
 
entity fsm_2 is 

port (  
clk, reset, x1  : IN std_logic; 
outp   : OUT std_logic 

); 
end entity; 
 
architecture beh1 of fsm_2 is 

type state_type is (s1,s2,s3,s4); 
signal state : state_type ; 

begin 
 

process1: process (clk,reset) 
begin 

if (reset ='1') then  
state <=s1; 

elsif (clk='1' and clk'Event) then 
case state is 

when s1 =>  if x1='1' then 
state <= s2; 

else 
state <= s3; 

end if; 
when s2 =>  state <= s4; 
when s3 =>  state <= s4; 
when s4 =>  state <= s1; 

end case; 
end if; 
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end process process1; 
 

process2: process (state) 
begin 

case state is 
when s1 => outp <= '1'; 
when s2 => outp <= '1'; 
when s3 => outp <= '0'; 
when s4 => outp <= '0'; 

end case; 
end process process2; 
 

end beh1; 
 
FSM With Three Processes VHDL Coding Example 
 
entity fsm_3 is 

port ( 
clk, reset, x1  : IN std_logic; 
outp   : OUT std_logic 

); 
end entity; 
 
architecture beh1 of fsm_3 is 

type state_type is (s1,s2,s3,s4); 
signal state, next_state : state_type ; 

begin 
process1: process (clk,reset) 
begin 

if (reset ='1') then 
state <=s1; 

elsif (clk='1' and clk'Event) then 
state <= next_state; 

end if; 
end process process1; 
 
process2 : process (state, x1) 
begin 

case state is 
when s1 => if x1='1' then 

next_state <= s2; 
else 

next_state <= s3; 
end if; 

when s2 => next_state <= s4; 
when s3 => next_state <= s4; 
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when s4 => next_state <= s1; 
end case; 

end process process2; 
 
process3 : process (state) 
begin 

case state is 
when s1 => outp <= '1'; 
when s2 => outp <= '1'; 
when s3 => outp <= '0'; 
when s4 => outp <= '0'; 

end case; 
end process process3; 

 
end beh1; 
 
 
Appendix 8 – ASCII Codes Table 
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