
VIVADO Quick Start Tutorial

Start the application either from the desktop or your operating system’s application
launcher, e.g. Windows menu / Start menu

Create a New Project
On the Welcome screen that greets you once you have started the Vivado application,
within the Quick Start section you should be able to find the Create Project > option and
click on that

Create a New Vivado Project

Figure 1. Create a New Vivado Project dialog

Click next, after which you will have to give your new project a name and location on the
desktop’s SSD.

Project Name
• For the project’s name is recommended to give a unique name that you would

remember
• For the project’s location (as opposed to the name) it is required to follow the

format outlined in the laboratory rules, meaning that it must be of the
D:/<GROUP>/<SEMI_GROUP>/<STUDENT_NAME> format. Please make sure that
there aren’t any spaces and accents / diacritics in the given path. Also, please do
not have the < > characters as part of the name, it’s just meant to denote that
there’s supposed to be a value there (e.g. D:/30421/II/alice_bob)

Figure 2. Project Name and Location

After clicking next, you will be taken to the Project Type dialog

Project Type
You will select the first (selected by default) option, in other words RTL Project and you will
want to make sure that the Do not specify sources at this time is checked as well

Figure 3. Project Type

Click next to progress to the next part, where you will specify the corresponding AMD /
Xilinx FPGA model that you will be developing with.

Default Part
- For the first option, which is the Category, it should be on All by default and you

will leave it as it is
- Below that, you will specify the FPGA Family which should be Artix-7
- After that, for the package type, you will select csg324
- The speed will be –1
- Lastly, the Temperature should be All Remaining

After setting the appropriate filtering values from above, you should be left with a limited
number of choices, from which you will select the xc7a100tcsg324-1

Figure 4. Default Part

Once you’ve verified the correct components, click on next to proceed to the New Project
Summary dialog and then click on next again to progress.

Main Vivado Window

Project Language
Next your project will initialize, and you will be shown the core Vivado window, with the
Project Summary again.

Pay close attention to the Target Language and Simulator Language values, since by
default those are usually Verilog and Mixed, but they should both be set to VHDL.

Click on the corresponding values, which should bring up the settings window and you
should be able to change them.

Figure 5. Verify Target & Simulator languages

Add a constraints file
The constraints file that in the AMD / Xilinx environment usually has a .xdc (Xilinx Design
Constraints) extension contains information as to how logically within your code / design,
you will interface with the actual physical ports that are on the development board.

These are usually supplied by the manufacturer of the board – in our case Digilent /
National Instruments – and they have the mapping as to which pin has what variable name.

 The default Master XDC Constraints file is available on Digilent’s GitHub repo, but we have
modified it a bit for the purposes of this laboratory, so that it would make some things
simpler, and you should be able to download it from the course’s website.

It is possible that others before you have already downloaded it, so you will not have to
download it again.

Figure 6. Add constraints file

Once you have successfully added the constraints file, then you can proceed to adding a
new Design Source in similar fashion.

Adding a new Design Source

Next, you will create your first source file for your hardware design.

Similarly to the constraints file above, you will right-click on the Design Sources folder
within the sources panel, then on Add Sources...

Follow the dialogs outlined by the pictures below in order to create your first empty VHDL
source file.

Figure 7. Add new design source

Add your code to the design source
You will notice that the newly created design source file contains a ton of different
comments. For the moment, we will disregard that, and remove so that it wouldn’t clutter
our screen and we can focus on our code.

Copy-paste the code from below and go over the individual parts that might not be clear for
you with your laboratory teacher.

NOTE: The code is also available at https://github.com/UTCN-AC-CS-CA/nexys-a7-
supplement

Since there could be issues with copy-pasting the code from a PDF document, it might be
better to copy it from the code repo

library ieee;
 use ieee.std_logic_1164.all;
 use ieee.std_logic_arith.all;
 use ieee.std_logic_unsigned.all;

https://github.com/UTCN-AC-CS-CA/nexys-a7-supplement
https://github.com/UTCN-AC-CS-CA/nexys-a7-supplement

entity proba1 is
 port (
 clk : in std_logic;
 btn : in std_logic_vector(4 downto 0);
 sw : in std_logic_vector(15 downto 0);
 led : out std_logic_vector(15 downto 0);
 an : out std_logic_vector(7 downto 0);
 cat : out std_logic_vector(6 downto 0)
);
end entity proba1;

architecture behavioral of proba1 is

begin

 led <= sw;
 an <= "000" & btn(4 downto 0);
 cat <= (others => '0');

end architecture behavioral;

Verifying & Uploading

Next – similarly as to how you go about building / compiling a software project – you will
perform the three key steps in order to make sure that your design doesn’t contain any
major issues and upload it to the development board. The steps are outlined in the
following sections. This section will go through the some of the different components of
the Flow Navigator, that can be found on the left side of your Vivado IDE.

Figure 8. Flow Navigator

Elaborate Design (Optional)
For basic, incremental designs, it might be worth it to sometime visually verify that the
code you have written is correctly interpreted by the synthesizing tool.

In order to do this, Vivado has the RTL Analysis section within the Flow Navigator.

First, you will have to initiate linting by clicking on the Run Linter option, which will check
for any syntax errors. After that, expand the Open Elaborated Design menu item, to
reveal several further options, and one of them should be the Schematic.

After running that, you should be presented with a schematic of your design, like the name
implies.

Figure 9. Elaborated Design / Generate Schematic

Synthesis
The first required step that you will be running is the synthesis. This is the process that will
take your RTL design code and create a netlist, in other words a certain representation of
the circuit with the different logic gates / electronic components, without the placement.

Newer versions of Vivado support the more recent VHDL-2008 and VHDL-2019 standards
of the language, whereas previous ones the core version from 1993.

To begin the process, click on the Run Synthesis item from the Synthesis menu

Figure 10. Run Synthesis

In the top right corner of the IDE, it will tell you as to which phase of the current process it’s
working on momentarily.

Figure 11. Current phase of the current process in the top-right corner

Once the process is complete, click on the Cancel button, since for the moment, we don’t
immediately wish to start with the implementation.

Implementation
The next crucial step will be the implementation, which is responsible for taking the netlist
that was generated during the synthesis and based on that perform additional
optimizations in order to create a placement of the necessary components and route
them, in other words connect them with each other.

Just like with the previous step, click the Run Implementation item in the
implementation section.

Figure 12. Start the implementation process

Similarly to the Synthesis, the status of the process will be displayed in the top right corner.

Once it has successfully completed, click on cancel again in order to not start another
process or open a new dialog box.

Generate Bitstream
The last crucial step will be the fastest one as will, since the bulk of the necessary work has
already been completed in the previous two processes.

This process will take your optimized implementation and create a binary file that will be
uploaded to the development board’s internal memory, thus applying your actualy logic /
design of the hardware.

Just like with the other processes, you will start this process by clicking on the Generate
Bitstream item from the Program and Debug menu.

Figure 13. Generate Bitstream

Once the process completed successfully, this time around, instead of cancelling the
dialog box, go ahead and select the “Open Hardware Manager” item, then click on “OK”.

Figure 14. Open Hardware Manager

Upload the bitfile
Lastly, you will have to upload the development board. There are several different ways to
achieve this, but the simplest would most likely be to click on the Open Target item
within the Open Hardware Manager menu, then to click on “Auto Connect”.

Figure 15. Open Target to Auto Connect

After this, you should click on the Program Device item that should now be available,
since the IDE has detected a connection to the development board.

This will bring up an additional dialog, where the previously generated bitfile should be
populated already with the full path. Confirming this dialog should begin the upload
process, after which you could verify your design on the actual hardware itself.

	Create a New Project
	Create a New Vivado Project
	Project Name
	Project Type
	Default Part

	Main Vivado Window
	Project Language
	Add a constraints file
	Adding a new Design Source
	Add your code to the design source

	Verifying & Uploading
	Elaborate Design (Optional)
	Synthesis
	Implementation
	Generate Bitstream
	Upload the bitfile

