
Computer Architecture

Lecturer: Mihai Negru

2nd Year, Computer Science

Technical University of Cluj-Napoca

Computer Science Department

Lecture 1: Introduction

https://mihai.utcluj.ro/

https://mihai.utcluj.ro/


2024

• The lecture classes are mandatory!

• Provide the students with the necessary information
– Understand: ISA, micro-architectures, CPU design methods, memory

hierarchy, CPU performance improvement

– Specification, design and implement CPUs, micro-architectures, data-paths
and control units

– To understand the new tendencies in computer architectures

• Prerequisites: Logic design, Digital System Design, VHDL Prog.

• 2C + 2L – 14 weeks

• Assessment:
– Written examination: E

– Lab activity: L

– Homework: H

Course Objectives
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• Introduction

• High Level Synthesis – HLS

• Instruction Set Architecture – ISA

• CPU Design – Single Cycle

• ALU Design

• CPU Design – Multi-Cycle

• CPU Design – Pipeline

• Advanced Pipelining – Static and Dynamic Scheduling of Execution

• Branch Prediction

• Superscalar Architectures

• Memory Hierarchy

• Modern CPU Architectures

Course Content
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• The laboratory classes and homework are mandatory!

• Teach students to operate with the concepts presented during the
lectures

• Develop practical skills in machine language programming, design
and implementation of micro-architectures using RTL and VHDL

• Design with Xilinx Development Tools and FPGA boards

• Design synthesizable VHDL hardware components FPGA

• MIPS assembly language, running simple programs on the
designed CPU

• Design and implementation (VHDL) of MIPS micro-architectures
and testing on FPGA boards

• The homework helps students in improving their problem solving
abilities

Laboratory Objectives
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• Introduction to Xilinx ISE / VIVADO Design Suite

• VHDL programming

• Combinational Circuits

• Sequential Circuits

• Memories

• Single Cycle CPU Design

• Pipeline CPU Design

• UART Interface

• I/O Communication

• CPU testing

• CPU presentation

Laboratory Content
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Levels of abstraction of a computing system

Cluj-Napoca 7

Applications that run on a computer

Electronic Circuits and Devices

Digital Circuits, Logic Gates, Register 
Transfer Level (RTL), Micro-Architecture

OUR FOCUS IS HERE
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• Architecture – the interface between a user and an object

• Computer Architecture
– Instruction Set Architecture (ISA)

– Computer Organization – micro-architecture

• ISA: the interface between Hardware and low-level Software

• Micro-architecture: components and connections between them
– Registers, ALU, Memory, Shifters, Logic Units, …

• The same ISA can have different organizations:
– MIPS single-cycle, multi-cycle, pipeline

• A specific architecture can be implemented by different micro-
architectures with different price/performance/power constraints

• ISA Examples: IA-32, IA-64, MIPS, SPARC, ARM, etc.

Basic Concepts
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• Recommendations to Manage Complexity
– Hierarchy – dividing the system into modules and sub-modules, until the

pieces are easy to understand

– Modularity – the modules must have well defined functions and interfaces,
in order to be easily integrated

– Regularity – uniformity among modules  reusable modules, in order to
reduce the number of modules that must be designed

• A computer architect designs a computer that must fulfill
– Functional requirements

– Price/Power/Performance/Availability constraints

Basic Concepts
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High Level Synthesis  Logic Synthesis  Layout Synthesis

Processor Design Concepts
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Design on levels of abstraction
Top-down

Factors that influence the design process

• Synthesis is the automatic mapping from a high-
level description to a low-level description

• High Level Synthesis or Architectural Synthesis
• having a description of circuit behavior, 

create a Register Transfer Level (RTL) 
architecture that implements the circuit
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• 2 types of parallelism (application specific point of view)
– Data Level Parallelism (DLP) – data that can be processed in the same time

– Task Level Parallelism (TLP) – independent tasks

• Parallelism classes
– Instruction Level Parallelism (ILP) – exploits data level parallelism

• Pipelining, Speculative execution

– Thread Level Parallelism – exploits DLP & TLP in a hardware model that
permits interaction between parallel threads

– Request Level Parallelism – exploits TLP in de-coupled tasks, specified by the
programmer or the OS

• Parallel Architectures
– Uni-processor systems

– Multi-processors systems – Multi-Core CPUs

– Vector Architectures and GPUs – exploits DLP by applying a single instruction
to a collection of data, in parallel

Parallelism Types
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• Simple classification of multi-processing architectures – 1966

• SISD – Conventional uni-processor systems, can exploit ILP
• SIMD – The same instruction is executed by many processors on different data:

Vector Architectures
• MISD – very rare, offers the advantage of redundancy
• MIMD – every processor operates on its own data and instructions, exploits task

level parallelism
• A system with N cores is effective when it runs N or more threads concurrently!

Flynn’s Taxonomy
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General Processor Architecture
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Processor = Data-Path + Control
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Uni-processor Classical Architectures
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Van Neumann /
Princeton Architecture

Harvard Architecture

A single memory for both Instruction and Data
Stored program computer

Separate memories for Instruction and Data
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• CPU types
– Complex Instruction Set Computer (CISC)

• Complex set of instructions, hard to pipeline, reduced number of registers, ALU
operations with memory

• Memory accesses through many different instructions

• Many addressing modes

• Instructions have variable width

– Reduced Instruction Set Computer (RISC)
• Reduced set of instructions, easy to pipeline, larger number of registers, ALU

operations only with registers

• Memory accesses only through load / store instructions

• Reduced number of addressing modes

• Instructions have fixed width

• Other architectures
– DSP – digital signal processors

– Embedded – SoC (system on chip)

– Reconfigurable – FPGA (field programmable gate arrays)

Computer Architectures
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• The interface between Hardware and low-level Software

• Core ISA elements
– Memory models (alignment, linear, split address space)

– Registers (special, general, mixed, kernel), Register model

– Data types (numeric, non–numeric)

– Instruction (format, size, types, and set)

– Operations provided in the instruction set

– Number of operands for each instruction, type and size of operands

– Address specification (registers, implicit, ACC, stack)

– Addressing modes (immediate, direct, register, indexed, stack,…)

– Flow of Control

– Input/Output, Interrupts

– …

Instruction Set Architecture, ISA
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• ISA design issues
– Which operation and data types should be supported?

– Operands: how many, how big?

– Where do operands reside?

– How many registers?

– How important are immediates and how big are they?

– Which addressing modes dominate usage?

– How are memory addresses computed?

– Which control instructions should be supported?

– How big a branch displacement is needed?

– How should the instruction format be like, which bits designate what?

– Instruction length: are all instructions the same length?

– Can you add contents of memory to a register?

– …

Instruction Set Architecture
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• ISA Classes
– Most modern ISAs are general purpose register (GPR). ALU operands are

registers or memory locations

– 2 types

• Register-Memory ISA: x86, x64. ALU operations: reg-reg or reg-mem

• Register-Register, Load/Store ISA: ARM, MIPS. ALU operations: reg-reg, only Load
and Store instructions access memory

• Memory addressing
– 80x86, ARM, MIPS use byte addressing

– ARM, MIPS – instructions must be aligned in memory

– To access an s-byte object at address A is aligned if A mod s = 0

– 80x86 does not require memory alignment, but the access is faster to
aligned operands

Instruction Set Architecture
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ISA – Addressing Modes
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Addressing mode
Example 
Instruction

Meaning

Register Add R4, R3 Regs[R4]  Regs[R4] + Regs[R3]

Immediate Add R4, #3 Regs[R4]  Regs[R4] + 3

Displacement Add R4, 100(R1) Regs[R4]  Regs[R4] + Mem[100 + Regs[R1]]

Register Indirect Add R4, (R1) Regs[R4]  Regs[R4] + Mem[Regs[R1]]

Indexed Add R4, (R1+R2) Regs[R4]  Regs[R4] + Mem[Regs[R1] + Regs[R2]]

Direct or Absolute Add R4, (1001) Regs[R4]  Regs[R4] + Mem[1001]

Memory indirect Add R4, @(R3) Regs[R4]  Regs[R4] + Mem[Regs[R3]]

Auto-increment Add R4, (R3)+
Regs[R4]  Regs[R4] + Mem[Regs[R3]]
Regs[R3]  Regs[R3] + d (size of element)

Auto-decrement Add R4, -(R3)
Regs[R3]  Regs[R3]  - d (size of element)
Regs[R4]  Regs[R4] + Mem[Regs[R3]]

Scaled Add R4, 100(R2)[R3]
Regs[R4]  Regs[R4] + Mem[100 + Regs[R2] + 
Regs[R3] * d]
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• Endianness

• Type and dimension of operands
– 80x86, ARM, MIPS support:

• 8-bit (ASCII character)

• 16-bit (Unicode character or half word)

• 32-bit (integer or word)

• 64-bit (double word or long integer)

• IEEE 754 floating point: 32-bit (single precision) and 64-bit (double precision)

– 80x86 also supports 80-bit floating point (extended double precision)

Instruction Set Architecture
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3 2 1 0

Address 0003 0002 0001 0000

Byte # 3 2 1 0

Address 0003 0002 0001 0000

Byte # 0 1 2 3

Bytes in register

Little Endian
LSB byte at lower address

Big Endian
MSB byte at lower address
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• Instruction operations

Instruction Set Architecture
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Operation type Examples

Arithmetic and logical
Integer arithmetic and logical operations: add, sub, and, or, 
multiply, divide

Data transfer
Load, stores, move instructions (on computers with memory 
addressing)

Control Branch, jump, procedure call and return, traps

System Operating system call, virtual memory management instructions

Floating Point Floating-point operations: add, multiply, divide, compare

Decimal Decimal add, multiply, decimal to character conversion

String String move, compare, search

Graphics
Pixel and vertex operations, compression/decompression 
operations
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• Flow Control Instructions
– Conditional jumps, unconditional jumps, procedure calls and returns

– PC relative addressing: next address is an offset added to the PC

• MIPS (BEQ, BNE, etc.): test the content of a register

• 80x86, ARM: test the bits of the FLAG register that are affected by arithmetic /
logic operations

– ARM, MIPS procedure call: sets the return address in a register

– 80x86 procedure call: sets the return address in memory or stack

• Instruction formats – 2 main types: fixed and variable length
– ARM, MIPS: 32-bit instructions, simple decoding

– 80x86: variable length instructions (1 – 18 bytes)

– Variable length instructions occupy less space

– The number of registers and used addressing modes influence instruction
length

– ARM, MIPS extensions: 16-bit instructions Thumb and MIPS16

Instruction Set Architecture
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• Variable (Intel 80x86, VAX)

• Fixed (Alpha, ARM, MIPS, PowerPC, SPARC)

• Hybrid (IBM 360/370, MIPS16, Thumb)

Instruction Set Architecture
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Operation and 
no. of operands

Address 
specifier 1

Address 
field 1

……..
Address 
specifier n

Address 
field n

Operation Address field 1 Address field 2 Address field 3

Operation Address specifier Address field 

Operation Address specifier 1 Address specifier 2 Address field

Operation Address specifier Address field 1 Address field 2
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Basic ISA Classes

Cluj-Napoca 24

0 address
STACK

1 address
ACCUMULATOR

2 address
REGISTER-MEMORY

3 address
LOAD/STORE

[2]
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Basic ISA Classes
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Assembly for C = A + B. Operands A, B, C are in memory
The add instruction has implicit operands for stack and ACC, explicit for GPR

Instruction formats STACK

ACCUMULATOR

REGISTER-MEMORY

LOAD/STORE

STACK ACCUMULATOR REGISTER-MEMORY LOAD/STORE

Push A Load A Load R1, A Load R1, A

Push B Add B Add R1, B Load R2, B

Add Store C Store R1, C Add R3, R2, R1

Pop C Store R3, C

op-code

op-code address

op-code address address address

op-code address address
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• Location of operands
– STACK (0 Address)

• both operands are implicit TOS (top of stack) and SOS (second on stack)

• the result goes to TOS

• Special instructions for memory transfers: PUSH and POP

– ACCUMULATOR (1 address)

• one operand is the accumulator register

• the other operand is given explicit

– REGISTER-MEMORY (2 address)

• the operands are registers or memory locations

• the result is one of the source registers

– LOAD/STORE (3 address)

• all operands are registers

• special instructions for accessing memory locations (load and store)

Basic ISA Classes
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• Moore’s Law
– Gordon Moore (1965): the number of transistors on a chip will double

approximately every two years.

Technology – Moore’s Law
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https://www.cnet.com/tech/computing/intel-will-outpace-moores-law-ceo-pat-gelsinger-says/
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• Dynamic Power (Watts)
– in CMOS chips (switching transistors)

– Slowing clock rate for a task reduces power consumption

– Dynamic Power can be reduced by lowering the voltage

• Voltages dropped from 5V to almost 1V in 20 years

– Microprocessors stop the clock for inactive modules energy saving

• Static Power (Watts)
– Important due to leakage current (even if the transistor is inactive)

– Proportional to the number of devices on a chip

– Leak current increases as transistor size decreases

Technology – Power Consumption
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• Systems with reduce power consumption
– Temperature diodes to reduce activity if the chip get’s to hot

– Reduce voltage and clock frequency or the issue rate of instructions

• In 2011, the target for leaks – 25% of the total power consumption

• First 32-bit microprocessors (Intel 80386) ~ 2 Watts

• Now, 3.3 GHz Intel Core i7 ~ 130 Watts

– The heat from a chip (1.5 cm) must be dissipated reach the limits of what
can be cooled by air

• Design for power:
– Sleep modes

– Partially or totally reduce the clock frequency

– Maximum operating temperatures Low

– The limits of air cooling have led to multiple processors on a chip running at
lower voltages and clock rates

Technology – Power Consumption
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Clock Frequency Evolution
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Frequency vs. Power Consumption
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https://www.quora.com/Why-havent-CPU-clock-speeds-increased-in-the-last-5-years
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• Bandwidth over Latency
– Bandwidth or throughput

• Total amount of work in a given time
• Number of tasks completed per unit time
• Important when we run several tasks

– Latency or execution time or response time (delay)
• The time period to complete a task
• Important if we have to run a time critical task

• Processor Performance Equation
– IC – instruction count

– CPI – average number of clock cycles per instruction

– CCT – clock cycle time

Computer Performance – Metrics 
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• Computer Performance depends on
– CCT  hardware and organization

– CPI  organization and ISA

– IC  ISA and compiler

• ISA influences the three components of computer performance

• Performance equation

• Running speed of a program: MIPS (millions instructions per
second)

Computer Performance – Metrics 
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• “the performance improvement to be gained from using some
faster mode of execution is limited by the fraction of the time the
faster mode can be used”

• Speedup

• Speedup depends on 2 factors:
– The fraction of time that can benefit from enhancement

– The gain obtained by using the enhancement

Amdahl’s Law
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Performance for entire task using the enhancement when possible

Performance for entire task without using the enhancement
Speedup 
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Amdahl’s Law
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• In 2004 Intel has canceled its uni-processor projects and has
declared, together with IBM and SUN, that higher performances
can be obtained by using more processors on a chip instead of
making uni-processor systems more faster

• This is a historical turnaround from instruction level parallelism to
thread and data level parallelism

• The compiler and the hardware exploit ILP implicitly

• For exploiting TLP and DLP the programmer is involved in
developing faster codes

• Next: Multiprocessors, Multi-cores, Many-cores, etc.

• Processor market 2010:
– 1.8 billion PMDs (90% cell phones), 350 mil. desktop PCs, 20 mil. servers

– 19 billion embedded processors

– ARM (RISC) ~ 6.1 billion caps, ~ 20 times more than x86

Conclusions
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Processor market
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https://www.design-reuse.com/news/48622/2020-mpu-sales-by-application.html
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Processor market
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• Write a program using instructions defined by you for the 0, 1, 2
and 3 addresses processors to implement the following expression:
e= a∙b∙c + d. The operands a, b, c, d and the result e are memory
locations.

• For the 0, 1, 2 and 3 addresses machines write a program to
evaluate the following expression: e=a∙b + c∙d.

• Describe the differences between big endian and little endian.

• …

Problems – Homework 
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• Types of Circuits
– Combinational Circuits

– Sequential circuits

• Basic building blocks
– Logic Gates

– Multiplexers

– Decoders

– D-Latches and D-Flip-Flops

– Counters

– Memories

VHDL – Remember 
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• Rules of VHDL coding!!!

– Not EVERYTHING is a component. Do not create components
for basic building blocks like: logic gates, latches, flip-flops, tri-
state buffers, counters, decoders, etc.

– Do not abuse of structural design at the logic gate granularity!

– You will generally use the behavioral type of describing your
design.

– You will create a new component only when a part of your
design has meaning (or when the TA explicitly tells you to do
so).

VHDL – To Remember 
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• 1-bit signal declaration

signal sig_name : std_logic := ‘0’;

• N-bit signal declaration

signal sig_name: std_logic_vector(N-1 downto 0): =“00….0”;

• Initialization

16-bit signal “0000000000000000”;

16-bit signal x“0000”;

16-bit signal (others => ‘0’);

VHDL – Remember 
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• Logic Gates – A & B – inputs, O – output

• Do not declare an entity, only signals if needed!

NOT AND OR

O <= not A; O <= A and B; O <= A or B;

NAND NOR XOR

O <= A nand B; O <= A nor B; O <= A xor B;

VHDL – Remember 
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• 2:1 Multiplexer

• 4:1 Multiplexer

VHDL – Remember 
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process(S, A, B, C, D)
begin

case S is
when "00"    => O <= A;
when "01"    => O <= B;
when "10"    => O <= C;
when others => O <= D;

end case;
end process;

O <= A when S = '0' else B; 

process(S, A, B) 
begin

if(S = ‘0’) then 
O <= A;

else
O <= B;

end if;
end process;

Do not declare an entity, 
only signals if needed!
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• 3:8 Decoder

• Do not declare an entity, only signals if needed!

VHDL – Remember 
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process(S)
begin

case S is
when "000"    => RES <= “00000001”;
when “001"    => RES <= “00000010”;
when “010"    => RES <= “00000100”;
when “011"    => RES <= “00001000”;
when “100"    => RES <= “00010000”;
when “101"    => RES <= “00100000”;
when “110"    => RES <= “01000000”;
when others   => RES <= “10000000”;

end case;
end process;
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• D-Latch

• D-Flip-Flop

• Do not declare an entity, only signals if needed!

VHDL – Remember 
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process(G, D) 
begin

if(G = ‘1’) then 
Q <= D;

end if;
end process;

process(clk) 
begin

if rising_edge(clk) then
Q <= D;

end if;
end process;
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• D-Flip-Flop with enable

• rising_edge(clk) is equivalent to clk’event and clk = ‘1’ but shorter

• NEVER use rising_edge(clk) and en = ‘1’ a.k.a. Gated Clock!

• Do not declare an entity, only signals if needed!

VHDL – Remember 
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process(clk, en) 
begin

if rising_edge(clk) then
if en = ‘1’ then 

Q <= D;
end if;

end if;
end process;



2024

• Up Counter

• Up Counter with enable signal

• Do not declare an entity, only signals if needed!

VHDL – Remember 
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process(clk) 
begin

if rising_edge(clk) then
cnt <= cnt + 1; -- ‘1’

end if;
end process;

process(clk, en) 
begin

if rising_edge(clk) then
if en = ‘1’ then 

cnt <= cnt + 1; 
end if;

end if;
end process;


