
Computer Architecture

Lecturer: Mihai Negru

2nd Year, Computer Science

Technical University of Cluj-Napoca

Computer Science Department

Lecture 2: High Level Synthesis

http://users.utcluj.ro/~negrum/

http://users.utcluj.ro/~negrum/

2024

• Digital System
– Data-Path – registers, busses, processing logic

– Control Unit – determines the sequence of data-processing operations of
the Data-Path

Register Transfer Level (RTL)

Cluj-Napoca 2

2024

• A system is described at RTL level by the transfer of information
between the memory elements of the system

RT operation: Rdest f(Rsrc1, Rsrc2,…., Rsrcn)

• Abstract RTL – a behavioral specification
– Does not take into account the structure of the digital system

– Not related to timing or resources

• Physical or Concrete RTL – provides an implementation of the
behavioral specification based on a selected structure at clock
period granularity
– Related to resources and timing constraints

• RTL Design
– Converts a behavioral specification (Abstract RTL) into a structural

description (Concrete RTL)

Register Transfer Level (RTL)

Cluj-Napoca 3

2024

• A digital system specified at Concrete RTL level includes the
following 3 components:
– The set of registers/memories in the system.

– The functional units, which perform the required operations.

– The control that supervises the sequence of operations in the system.

• Register Transfer Level (RTL) / Register Transfer Notation (RTN)
– RTL represents an algebraic notation used to define machine-level

operations

– Not executed by a computer – used to explain/describe how the computer
works.

– Micro-operation: single register transfer operation

X Y + Z
– RTL statement: (condition) {micro-operation,…, micro-operation};

(c>0) X Y + Z

Register Transfer Level (RTL)

Cluj-Napoca 4

2024

Register Transfer Notation (RTN)

Cluj-Napoca 5

 Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

X Y Data transfer of contents of regY to regX

X 0 Clears regX

X Y + Z Adds contents of regY with regZ, load into regX

X Y v Z ORs contents of regY with regZ, load into regX

DR M[AR] Load into DR the contents of memory pointed to by AR

R1 >> R1 Register R1 one bit right shift, with 0 into left-most bit

R2 << R1 Register R1 one bit left shift, with 0 into right-most bit

X Y, A B Parallel transfers

(cond) A B If cond = 1 then transfer contents of regB into regA

S0 A B When in state S0, load regA with contents of regB

P · (a · b) R2 R3 When in state P, if a AND b is true then load R2 with contents of
R3; a, b are signals

2024

• High Level Synthesis (Structural Synthesis)
– Starts from an abstract behavioral description

– Generates a Concrete RTL structural description

• Functional units (+,-,*), Memories, Interconnections

– Obeys constraints (timing/size/performance)

• VHDL Synthesis (comparison)
– Starts from an RTL description

– Uses logic synthesis techniques to optimize the design

– Generates a standard-cell net list FPGA

• HLS basic operations
– Resource allocation – the number and types of hardware components

– Scheduling – assigning operations to time slots (clock cycles)

– Module Binding – assigning operations to allocated hardware components

– Controller Synthesis – design on control style and clocking scheme

High Level Synthesis (HLS)

Cluj-Napoca 6

2024

• Data-Flow graphs (DFGs) or Data-Dependency Graphs (DDGs)
– Represent parallelism in computation and precedency of operations

– Nodes: represent computations

– Edges: represent precedence relations

DATA-FLOW Model of Computation

Cluj-Napoca 7

Data-Flow Graph – Example

Sequential Computation

tmp_1 = A+B

tmp_2 = C–D

tmp_3 = E*F

tmp_4=tmp_1/tmp_2

tmp_5=tmp_1*tmp_4

tmp_6=tmp_4+tmp_3

Result=tmp_5–tmp_6

2024

• Data-Flow graphs (DFGs) or Data-Dependency Graphs (DDGs)
– Represent parallelism in computation and precedency of operations

– Nodes: represent computations

– Edges: represent precedence relations

DATA-FLOW Model of Computation

Cluj-Napoca 8

Data-Flow Graph – Example

Concurrent Computation

tmp_1=A+B, tmp_2=C–D, tmp_3=E*F

tmp_4=tmp_1/tmp_2

tmp_5=tmp_1*tmp_4, tmp_6=tmp_4+tmp_3

Result=tmp_5–tmp_6

2024

• Behavioral optimization
– no knowledge about the circuit implementation is required

Compilation / Optimization Techniques

Cluj-Napoca 9

Tree Height Reduction

x = a + b + c + d; can be split

x = a + b; x = x + c; x = x + d; three additions in series.

p = a + b; q = c + d; x = p + q; the first two additions can be done in parallel

Constant Propagation Variable Propagation

a = 0; b = a + 1; c = 2∙b a = x; b = a + 1; c = 2∙a

a = 0; b = 1; c = 2 a = x; b = x + 1; c = 2∙x;

Operator strength reduction Dead code elimination

b=3∙x; a = x; b = x + 1; c = 2∙x;

t = x <<1; b = x + t; Removed if not referenced in subsequent code

Code motion Common Sub-expression elimination

for (i = 1; i <= a∙b){ } a = x + y; b = a + 1; c = x + y;

t = a∙b; for (i = 1; i<= t) { } a = x + y; b = a + 1; c = a

2024

• Consider the following program [1]:

HLS – Example 1

Cluj-Napoca 10

repeat
xl = x + dx;
ul = u - (3 * x * u * dx) - (3 * y * dx);
yl = y + u * dx;
c = xl < a;
x = xl; u = ul; y = yl;

until (c);

xl = x + dx v10
ul = u - (3 ∙ x ∙ u ∙ dx) - (3 ∙ y ∙ dx) v1-v7
yl = y+ u∙dx v8, v9
c = x < a v11

2024

Scheduling and Binding

Cluj-Napoca 11

Sequencing Graph – 6 Multipliers, 5 ALUs Allocation and Binding – 4 Multipliers, 2 ALUs

Scheduling Associate a start time to each operation

Resources Sharing A component may be used for several operations sequential scheduling

Binding
Relates operations to available resources
Specifies which resource implements an operation

2024

• ASAP – as soon as possible: the start time for each operation is the minimum
allowed by al dependencies; yields the minimum start-time values

• ALAP – as late as possible, provides the maximum corresponding values

Scheduling Without Resource Constraints

Cluj-Napoca 12

ASAP Scheduling ALAP Scheduling

2024

• Mobility defines the start time span of an operation
– Use ASAP and ALAP scheduling

– The difference in scheduling determines the mobility of the operations

– Mobility can be exploited for a more efficient scheduling

• Zero Mobility
– implies that an operation can be started only at the given time step in order

to meet the overall latency constraints. When the mobility is larger than
zero, then it measures the span of the time interval in which it may be
started

• Mobility example:
– Operations 1 – 5: mobility = 0

– Operations 6 – 7: mobility = 1

– Operations 8 – 11: mobility = 2

Mobility

Cluj-Napoca 13

2024

• Hardware models:
– Functional Units

– Registers

– Register-File

– Multiplexers

– Tri-state buffers

– Buses

• Parameters defining the hardware model:
– Clocking strategy: single or multiple phase clocks

– Interconnect: MUX and/or BUS based

– Clocking of functional units
• Single-cycle

• Multi-cycle

• Chaining

• Pipeline

Data-Path Synthesis and Optimization

Cluj-Napoca 14

2024

• Data-Path synthesis
– Generate structural data-path realization from scheduled DFG

– Two steps: allocation and binding

• Allocation – chooses FUs and registers
– select the one that best matches the design constraints

– Example: If area is more important than speed, adder is implemented using
ripple-carry, if speed is more important than area, adder is implemented
using look-ahead

• Binding – assigns operations to FUs, variables to registers
– the aim is to connect FUs such that the cost of interconnection (number of

mux, BUS) is minimized

• Register-Binding Algorithm
– Lifetime of a variable – number of cycle times in which that variable is alive

– Analyses the lifetimes of all variables

– Establish the required number of registers

Data-Path Synthesis and Optimization

Cluj-Napoca 15

2024

Register Allocation and Binding

Cluj-Napoca 16

Variable lifetime register allocation
a. Sequencing graph, b. Variable lifetimes 5 registers required

2024

• The control flow described by the schedule is implemented using a
state machine, one state for each control step

• The control signals generated from each state activates the
Functional Units, Registers, MUX, BUS selects, etc.

Control Unit Synthesis

Cluj-Napoca 17

ASAP Scheduling FSM state transition diagram

The numbers by the vertices of the diagram are
the reference to the activation signals

2024

Scheduling With Resource Constraints

Cluj-Napoca 18

1 Multiplier and 1 ALU

MUX-based data-path

2024

• 1 Multiplier and 1 ALU
– One state for each clock cycle.

– In each state the generated signals activate the needed operations

Scheduling With Resource Constraints

Cluj-Napoca 19

FSM state transition diagram

2024

• Pipelining – a common technique for enhancing the performance
of a digital circuit or processor

• The circuit is partitioned in a linear array of stages each
concurrently executing a task on a different set of data and feeding
its results to the following stage

• Pipelining increases throughput.

• No resource constraints

• Operations have unit execution delays

Synthesis of Pipeline Circuits

Cluj-Napoca 20

2024

• Time speed; latency, throughput, clock frequency

• Space cost; multilevel parallel combinational logic,
sequential component sharing, pipelining

• Power battery life; sleep modes

• Testability crash; BIST (Built In Self Test)

• Design styles:
– Latency (response delay time) optimization: single-cycle, multilevel parallel

combinational logic data-path, no resource constraints, and slow clock

– Throughput (frequency of result generation) optimization: pipelined data
path, fast clock.

– Space (resource) optimization: sharing, reuse of components, multi-cycle
data-path.

– Space (communication) optimization: MUX-based or 1, 2, 3 BUS multi-cycle
data-path.

Design Constraints and Optimizations

Cluj-Napoca 21

2024

• Single-cycle design
– Design for: optimal latency.

– Resources: combinational functional units (FU), no resource constraints.

– Communication: direct, point-to-point connections between FUs.

– Clock frequency: defined by the critical path, the longest composed delay of the serial
connected FUs

• Pipeline design
– Design for: optimal throughput.

– Resources: combinational FUs, inter stage registers, possible resource constraints.

– Communication: through inter stage pipeline registers. The combinational FUs are isolated
through inter stage pipeline registers and can work in parallel on different execution phases.

– Clock frequency: defined by the slowest functional component and register overhead.

• Multi-cycle design
– Design for: high clock frequency with spatial constraints. Resource sharing – reuse.

– Resources: limited number of combinational FUs, temporary registers.

– Communication: through temporary registers, MUX-es and BUS-es. The intermediate results of
combinational FUs are registered for further use.

– Clock frequency: defined by the slowest functional component and register overhead.

Design Constraints and Optimizations

Cluj-Napoca 22

2024

• Design of application specific FUs, based on standard components

• Solution 1 – Single-cycle

• We have to rewrite the equation in terms of standard, 2 inputs, 1 - output
operations: A∙X, B∙X, (A∙X)∙X, (B∙X)+C, ((A∙X)∙X + (B∙X)+C

• The DFG shows the data dependencies and precedence of operations

• Resources: 3 Multipliers, 2 ALUs. Critical Path defines the response time (2 ∙ x + 1 ∙ +)

• Data Flow driven execution: NO conditions, NO control signals

Problem: Y = A∙X2 + B∙X + C

Cluj-Napoca 23

DFG: Y = A∙X2 + B∙X + C Data-Path: Y = A∙X2 + B∙X + C

2024

• Solution 2 – Single-cycle

• Rewrite the equation: Y = (A∙X + B)∙X + C

• Resources: 2 Multipliers, 2 ALUs. Critical Path defines the response time (2 ∙ x + 2 ∙ +)

• Data Flow driven execution: NO conditions, NO control signals

• 2 solutions with different response times and resource utilization

Problem: Y = A∙X2 + B∙X + C

Cluj-Napoca 24

DFG: Y = (A∙X + B)∙X + C

2024

• Solution 3 – Pipeline (based on the second single-cycle solution)

Problem: Y = A∙X2 + B∙X + C

Cluj-Napoca 25

4 Pipeline stages: Y = (A∙X + B)∙X + C

• Suppose the Adder and Multiplier delays are equal
• Introduce 4 pipeline registers after every

combinational circuit
 4 balanced pipeline stages

• At every clock cycle a new set of variables A, X, B, C
can enter the pipeline

• The pipeline stages are working simultaneously
• The latency of the circuit (the propagation delay

through the complete pipeline) is composed from
the delay of the combinational and register
components of the stages.

• Latency > Single-cycle design.
• The pipelined design needs more resources than

single-cycle
• After a pipeline filling period, in every clock cycle

we obtain a new value of Y.
• The throughput is 1 result /clock period.

2024

• Solution 4 – Multi-cycle MUX-Based, 1 Multiplier and 1 ALU

Problem: Y = A∙X2 + B∙X + C

Cluj-Napoca 26

DFG, the lifetime of variables: Y = (A∙X + B)∙X + C

• Use 4 temporary registers for the initial A, X, B, C values: RA, RB, RC, RX
• RA can be used as for A, A∙X, A∙X+B, (A∙X+B)∙X and Y values – 5 different values

2024

Clock1 Clock2 Clock3 Clock4

Multiplier in 0 A A∙X+B

Multiplier in 1 X X

Multiplier Out A∙X (A∙X+B)∙X

Adder in 0 A∙X (A∙X+B)∙X

Adder in 1 B C

Adder Out A∙X+B Y

RA in
A∙X

Multiplier

A∙X+B

Adder

(A∙X+B)∙X

Multiplier

Y

Adder

Problem: Y = A∙X2 + B∙X + C

Cluj-Napoca 27

Connection between FUs and RA
Multi-Cycle Data-Path MUX-based

2024

• Concrete RTL description for Y = (A∙X + B)∙X + C and control signals

Problem: Y = A∙X2 + B∙X + C

Cluj-Napoca 28

T0: The initial values of the variables have been loaded

T1: RA RA x RX; S2 X; S1 2; // RA = A∙X

T2: RA RA + RB; S2 0; S1 1; // RA = A∙X + B

T3: RA RA x RX S2 X; S1 2; // RA = (A∙X + B) ∙X

T4: RA RA + RC; S2 1; S1 1; // RA = A∙X2 + B∙X + C

RTL description MUX control Tracing

The control unit can be implemented as a 4-state FSM (5 by includings T0)

Pipeline vs. Multi-cycle throughput difference:

• Pipeline: at every clock cycle a new set of variables A, X, B, C can enter the pipeline and a
new result is produced, after the filling time.

• Multi-cycle: at every 5th clock cycle a new set of variables can enter and a result is produced.
• The clock cycles can have the same values.

2024

• Solution 5 – Multi-cycle 1-BUS, Temporary ACC register, 1 ALU

Problem: Y = A∙X2 + B∙X + C

Cluj-Napoca 29

T0: Suppose, that the initial values of the variables have been loaded

T1: ACC ALUtransfer RA;
rdRA, wrACC,
ALUop=transfer;

// ACC = A

T2: ACC ACC x RX;
rdRX, wrACC,
ALUop= *;

// ACC = A∙X

T3: ACC ACC + RB;
rdRB, wrACC,
ALUop= +;

// ACC = A∙X + B

T4: ACC ACC x RX;
rdRX, wrACC,
ALUop= *;

// ACC = (A∙X + B) ∙X

T5: ACC ACC + RC;
rdRC, wrACC,
ALUop= +;

// ACC = A∙X2 + B∙X + C

RTL description Control Definition Tracing

Tri-state buffers for all writes to the bus.
The Control Unit can be implemented as a 5 state FSM.

Multi-Cycle Data-Path
1-BUS

2024

• Solution 5 – Multi-cycle 3-BUS, 1 ALU

Problem: Y = A∙X2 + B∙X + C

Cluj-Napoca 30

Multi-Cycle Data-Path
3-BUS

T0: Suppose, that the initial values of the variables have been loaded

T1: RA RA x RX; rdRA, rdRX, ALUop= *, wrRA; // RA = A∙X

T2: RA RA + RB; rdRA, rdRB, ALUop= +, wrRA; // RA = A∙X + B

T3: RA RA x RX; rdRA, rdRX, ALUop= *, wrRA; // RA = (A∙X + B) ∙X

T4: RA RA + RC; rdRA, rdRC, ALUop= +, wrRA // RA = A∙X2 + B∙X + C

RTL description Control Definition Tracing

BUS3 can be used for initial loading of the registers, through the ALU
The Control Unit can be implemented as a 4 state FSM.

2024

• For the equation: a∙x2 + b∙x + c, draw the dataflow graph for:
a. ASAP, ALAP scheduled execution

b. Pipelined execution

– Compare the latencies, throughputs and costs of the solutions.

a. Implement the multi-cycle 2-bus based solution

• For the equation: w = a∙(b∙x + z) – c∙(a∙y + x) assume:
a. Implementation without constraints.

b. Implementation with 1 Add/Subtract and 1 Multiplier unit; Latencies = 1 clk.

– For the implementations a and b show the scheduled DFGs, the lifetime of
the variables, the minimal number of necessary registers and the
corresponding data paths for a multi-cycle design.

Problems – Homework

Cluj-Napoca 31

2024

1. P. Eles, Z. Peng, “System Synthesis of Digital Systems”, Lecture
slides, March 2000,
http://www.ida.liu.se/~petel/SysSyn/lect1.frm.pdf

2. P. Coussy, D.Gajski, M.Meredith, and A.Takach, „An introduction to
high-level synthesis”, IEEE Design Test of Computers, 26(4):8 – 17,
jul. 2009.

3. Egon Boerger and Robert Staerk, “A Method for High-Level System
Design and Analysis”, (Abstract State Machines chapter), Springer-
Verlag 2003.

References

Cluj-Napoca 32

