
Computer Architecture

Lecturer: Mihai Negru

2nd Year, Computer Science

Technical University of Cluj-Napoca

Computer Science Department

Lecture 4: Single-Cycle CPU Design

http://users.utcluj.ro/~negrum/

http://users.utcluj.ro/~negrum/

2024

1. Analyze instruction set data-path requirements
– Write the micro-operation sequences for the target ISA

– RTL statements specify the data-path components and their interconnection

2. Select a set of data-path components and establish clocking
methodology
– Define when storage or state elements can be read and when they can be

written, e.g. clock edge-triggered

– Find the worst-time propagation delay in the data-path to determine the
data-path clock cycle (CPU clock cycle)

3. Assemble data-path meeting the requirements
– Create an initial data-path (i.e. registers, ALU, memories)

– Establish the connectivity requirements

– Whenever multiple sources are connected to a single input (or destination),
a multiplexer of appropriate size is added

– Complete the micro-operation sequences for all remaining instructions
adding data path components + connections/multiplexers as needed

Processor Design Phases

Cluj-Napoca 2

2024

4. Identify and define the function of all control points or signals
needed by the data-path
– For each instruction from the target ISA identify the values of the control

signals that affect the register transfers

5. Assemble the control logic
– Design the control unit based on the identified control signals

– 3 main types of control unit

• Combinational logic single cycle CPU (Any instruction completed in one cycle)

• Hard-Wired: Finite-state machine implementation

• Micro-programmed

• MIPS Single-Cycle CPU Design adapted from [1]

Processor Design Phases

Cluj-Napoca 3

2024

• Design Step 1: MIPS-Lite Subset
– Select a number of representative target instructions

• RTL Abstract defines the behavior of each instruction

• Remember the instruction execution cycle (previous lecture)
– IF, ID/OF, EX, MEM, WB

– IF, ID and OF are common for all instructions

Single-Cycle CPU Design – Step 1

Cluj-Napoca 4

Instruction RTL Abstract Program Counter

add $rd, $rs, $rt RF[rd]  RF[rs] + RF[rt] PC  PC + 4

sub $rd, $rs, $rt RF[rd]  RF[rs] – RF[rt] PC  PC + 4

ori $rt, $rs, imm RF[rt]  RF[rs] | Z_Ext(imm) PC  PC + 4
lw $rt, imm($rs) RF[rt] M[RF[rs] + S_Ext(imm)] PC  PC + 4
sw $rt, imm($rs) M[RF[rs] + S_Ext(imm)]  RF[rt] PC  PC + 4

beq $rt, $rs, imm
If(RF[rs] == RF[rt]) then PC  PC + 4 + S_Ext(imm) <<2
else PC  PC + 4

2024

• R-type Instructions
– Basic operation: RF[rd] RF[rs] op RF[rt]

– Next instruction PC: PC PC + 4

– OPCODE is always Zero for R-type Instructions

• ADD $rd, $rs, $rt
– RF[rd] RF[rs] + RF[rt]

– PC PC + 4

– Add signed 32-bit numbers.

– Exception on OVERFLOW

– Addressing Modes
• Register direct

Single-Cycle CPU Design – Step 1

Cluj-Napoca 5

Necessary Resources

IF PC, Instr. Memory, Adder

ID/OF Register File, Main Control Unit

EX ALU, ALU Control Unit

MEM No operation

WB Register File

2024

• I-type Instructions: Load Word – LW
– Load a word (32 bits) from the Data Memory into a Register

• lw $rt, imm($rs)
– RF[rt]  M[RF[rs] + S_Ext(imm)]

– PC  PC + 4

– Addressing Modes

• Register Direct

• Base addressing

Single-Cycle CPU Design – Step 1

Cluj-Napoca 6

Necessary Resources

IF PC, Instr. Memory, Adder

ID/OF Register File, Main Control Unit, Extender

EX ALU, ALU Control Unit

MEM Data Memory

WB Register File

MUX

2024

• I-type Instructions: Store Word – SW
– Store a word (32-bits) from the Register File in the Data Memory

• sw $rt, imm($rs)
– M[RF[rs] + S_Ext(imm)]  RF[rt]

– PC  PC + 4

– Addressing Modes

• Register Direct

• Base addressing

Single-Cycle CPU Design – Step 1

Cluj-Napoca 7

Necessary Resources

IF PC, Instr. Memory, Adder

ID/OF Register File, Main Control Unit, Extender

EX ALU, ALU Control Unit

MEM Data Memory

WB No operation

2024

• I-type Instructions: Load Upper Immediate – LUI
– Load a constant in high part of a word

• lui $rt, imm
– RF[rt]  imm || 0x0000

– PC  PC + 4

– Addressing Modes

• Register direct

– Used to form 32 bits constants with ORI

– Additional Resources: shifter implemented in the ALU

Single-Cycle CPU Design – Step 1

Cluj-Napoca 8

2024

• I-type Instructions: Branch on Equal – BEQ
– Compare two registers, then perform a conditional jump relative to the PC

• beq $rt, $rs, imm
– If(RF[rs] == RF[rt])  PC  PC + 4 + S_Ext(imm) <<2 else PC  PC + 4

– Addressing Modes

• PC-relative addressing

– If condition is not true

• Sequential execution, + 4

– If condition is true

• Jump, PC + 4 + S_Ext(imm)<<2

Single-Cycle CPU Design – Step 1

Cluj-Napoca 9

Necessary Resources

IF PC, Instr. Memory, Adder, Adder, MUX

ID/OF Register File, Main Control Unit, Extender

EX ALU, ALU Control Unit

MEM No operation

WB No operation

2024

• Needed Resources (so far)
– PC – Program Counter

– Memories

• Instruction and Data Memory

– Register File (32 x 32 bits)

• Read R[rs], Read R[rt]

• Write R[rd] or R[rt]

– Sign / Zero Extender for address / immediate field

– Shift Left 2

– ALU – Arithmetic Logic Unit

• Arithmetic or Logical operations with two registers

• Arithmetic or Logical operations with one register and an extended immediate
value

– Add PC with 4 or with 4 + Sign Extended Immediate << 2 for next
instructions address (PC) computation

Single-Cycle CPU Design – Step 1

Cluj-Napoca 10

MUX

MUX

MUX

2024

• Design Step 2: Data-Path Components

Single-Cycle CPU Design – Step 2

Cluj-Napoca 11

• Program Counter – PC
 32-bit positive edge triggered D flip-flop

• Instruction Memory (ideal ROM model)
 One input bus: Instruction address
 One output bus: Instruction
 Memory word is selected by Instruction address, no control signals

• Adder
 32-bit Ripple Carry Adder to form the next instruction address

[1]

2024

Single-Cycle CPU Design – Step 2

Cluj-Napoca 12

• Register File 32x32-bits
 Built using D flip-flops (didactic model), SRAM in real machines
 Two 32-bit data outputs: Read data 1 and Read data 2
 One 32-bit data input: Write data
 Multi-access: 2 asynchronous Reads + 1 edge triggered Write in the same clock period
 Read register 1 selects the register to put on Read data 1 output
 Read register 2 selects the register to put on Read data 2 output
 Write register selects the register to be written by Write Data when RegWrite
is asserted
 During read operation, Registers behaves as a combinational logic block

• Arithmetic Logic Unit – ALU
 Designed according to ISA requirements

[1]

2024

Register File Implementation

Single-Cycle CPU Design – Step 2

Cluj-Napoca 13

2024

Single-Cycle CPU Design – Step 2

Cluj-Napoca 14

• Data Memory (ideal SRAM model)
 Two input buses: Address and Write data
 One output bus: Read data
 Two control signals: MemRead and MemWrite

• Sign Extension Unit
 The control signal will only be added later
 ExtOp = 1  Sign Extender
 ExtOp = 0  Zero Extender

ExtOp

[1]

2024

• Design Step 2: Clocking Methodology
– Clocking methodology defines when signals can be read and written

– Determines when data is valid and stable relative to the clock

• Clocking alternatives
– Falling edge triggered system

– Rising edge triggered system

– Two phase clocking

• All storage elements (e.g. Flip-Flops, Registers, Data Memory)
writes are triggered by the same clock edge.
– Usually, State elements are written on every clock cycle

– If not, we need an explicit write control signal.

– Write only when both the write control is asserted and the clock edge occurs

Single-Cycle CPU Design – Step 2

Cluj-Napoca 15

2024

• Design Step 3: Assemble Data-Path – Single-Cycle

Instruction Fetch
– 32-bit Program Counter, 32-bit Adder and instruction Memory

– Instruction IM[PC]; PC PC + 4

Single-Cycle CPU Design – Step 3

Cluj-Napoca 16

[1]

2024

Single-Cycle CPU Design – Step 3

Cluj-Napoca 17

Branch Instruction: If(RF[rs] == RF[rt]) then PC  PC + 4 + S_Ext(imm) <<2
else PC  PC + 4

[1]

2024

Single-Cycle CPU Design – Step 3

Cluj-Napoca 18

R-type Instructions: RF[rd]  RF[rs] op RF[rt]
I-type Instruction – Load: RF[rt]  M[RF[rs] + S_Ext(imm)]
I-type Instruction – Store: M[RF[rs] + S_Ext(imm)]  RF[rt]
…..

[1]

2024

Single-Cycle CPU Design – Step 3

Cluj-Napoca 19

Putting It All Together [1]

2024

Single-Cycle CPU Design – Step 3

Cluj-Napoca 20

Single-Cycle Data-Path with Control Signals for MIPS-lite [1]

2024

• Design Step 4: Identifying the Control Signals
– Identify and define the function of all control signals needed by the data-path

– Analyze each instruction to determine the setting of control points that affect the
register transfers

Single-Cycle CPU Design – Step 4

Cluj-Napoca 21

Instruction
Reg
Dst

Reg
Write

ALU
Src

PC
Src

Mem
Read

Mem
Write

Memto
Reg

ALU
Op

R- format 1 1 0 0 0 0 0 10
lw 0 1 1 0 1 0 1 00
sw X 0 1 0 0 1 X 00
beq X 0 0 1 0 0 X 01

The main control signal values for MIPS-lite

2024

Single-Cycle CPU Design – Step 4

Cluj-Napoca 22

Signal name Effect when deasserted (0) Effect when asserted (1)

RegDst
The register destination number for the
Write register comes from the rt field

The register destination number for the
Write register comes from the rd field

RegWrite None
The register on the Write register input is
written into with the value on the Write
data input

ALUSrc
The second ALU operand comes from the
second Register file output

The second ALU operand is the sign-
extended lower 16-bits of the instruction

PCSrc
The PC is replaced by the output of the
adder that computes the value of PC + 4

The PC is replaced by the output of the
adder that computes the branch address

MemRead None
Data memory contents at the read
address are put on read data output

MemWrite None
Data memory contents at address given by
write address is replaced by value on write
data input

MemtoReg
The value fed to the register write data
input comes from the ALU

The value fed to the register write data
input comes from the data memory

The Meaning of the Control Signals

ALUOp – defines the behavior of the ALU control
PCSrc = Branch AND Zero

2024

Single-Cycle CPU Design – Step 4

Cluj-Napoca 23

Single-Cycle Data-Path with Control [1]

2024

Single-Cycle CPU Design – Step 4

Cluj-Napoca 24

Local Control for the ALU
opcode  ALUOp  ALUCtrl

Our example uses 2-bits for ALUOp. It can be further extended if necessary

Instruction
Opcode

ALUOp
Instruction
Operation

Function
Field

Desired
ALU Operation

ALU
Control

LW 00 load word XXXXXX add 0010

SW 00 store word XXXXXX add 0010

Branch equal 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 and 100100 and 0000

R-type 10 or 100101 or 0001

R-type 10 set on less than 101010 set on less than 0111

2024

Single-Cycle CPU Design – Step 4

Cluj-Napoca 25

Single-Cycle Data-Path with Jump [1]

2024

• Design Step 5: Implement the Control
– Only combinational logic is needed for the Single-Cycle Control

Single-Cycle CPU Design – Step 5

Cluj-Napoca 26

A possible PLA implementation of the Main Control Unit [1]

2024

• Critical Path
– Load Word operation: PC’s Clk-to-Q + Instruction Memory’s Access Time +

Register File’s Access Time + ALU to Perform a 32-bit Add + Data Memory
Access Time + Setup Time for Register File Write + Clock Skew

Single-Cycle CPU Design

Cluj-Napoca 27

Single cycle: Instruction Timing Comparison

2024

• Single-Cycle disadvantages
– The clock cycle is chosen to fullfill the critical path (lw) slow clock

– The time needed for a load is much larger than for other instructions

Single-Cycle CPU Design

Cluj-Napoca 28

Pr Pr

Time Instructions Cycles Time

ogram ogram Instruction Cycle
  

Processor type CPI CLK cycle time

Single-Cycle 1 Long cycle time

Multi-Cycle >1 Short cycle time

Pipelined ~1 Short cycle time

Remember: Computer Performance

2024

• Single-Cycle CPU Extensions
– Problem: define some ports for I/O communication

– A convenient solution (without introducing dedicated instructions)

• I/O mapped through the memory address space

• Some addresses from data memory will be reserved for I/O ports

• Writing and reading to this I/O ports is carried out by using the standard
instructions for memory accesses (lw and sw)

• LW and SW used for word (32-bits) transfers (use LH and SH for half words, LB
and SB for bytes)

• You need to specify in the RTL description how to handle the reserved addresses
for peripherals. From RTL will result the necessary supplementary components
(address decoders, etc.)

Single-Cycle CPU Design – I/O

Cluj-Napoca 29

2024

Single-Cycle CPU Design – I/O

Cluj-Napoca 30

Connecting I/O Devices

• Devices are mapped
through the memory
address space
• 2 INPUTS
• 1 OUTPUT

• Control Signals:
• MemRead
• MemWrite
• MA

2024

Single-Cycle CPU Design – I/O

Cluj-Napoca 31

MIPS Interrupt
Mechanism

• IE – Interrupt Enable
• ZXT – Zero Extender

• See the previous course

2024

• Implement other instructions for the Single-Cycle MIPS CPU
– add, sub, and, or, lw, sw, beq, j, addi, andi, ori

– sll, srl, sra, sllv, srlv, srav

– slt, slti

– bne , bgez, bltz,…

– jr, jal

– ….

• Implement new instructions for the Single-Cycle MIPS CPU
– LWR, SWR (sums two registers to obtain the memory address)

– LWA, SWA (uses a single register to obtain the memory address)

– SWAP two registers

– Arithmetic/logical instructions with memory operands

• addm $t2, 100($t3) $t2 $t2 + M[$t3+100]

Problems – Homework

Cluj-Napoca 32

2024

1. D. A. Patterson, J. L. Hennessy, “Computer Organization and
Design: The Hardware/Software Interface”, 5th edition, ed.
Morgan–Kaufmann, 2013.

2. D. A. Patterson and J. L. Hennessy, “Computer Organization and
Design: A Quantitative Approach”, 5th edition, ed. Morgan-
Kaufmann, 2011.

3. MIPS32™ Architecture for Programmers, Volume I: “Introduction
to the MIPS32™ Architecture”.

4. MIPS32™ Architecture for Programmers Volume II: “The MIPS32™
Instruction Set”.

References

Cluj-Napoca 33

