
Computer Architecture

Lecturer: Mihai Negru

2nd Year, Computer Science

Technical University of Cluj-Napoca

Computer Science Department

Lecture 5: ALU Design

http://users.utcluj.ro/~negrum/

http://users.utcluj.ro/~negrum/

2024

• 2’s complement – advantages
– Subtract can share the same logic as add

– Sign bit can be treated as a normal number bit in addition

• 1’s complement disadvantage
– Two zero representations

Binary Number Representation

Cluj-Napoca 2

Sign Magnitude One's Complement Two's Complement
000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = -0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = -0 111 = -1

2024

• Unsigned binary integers
– Typically represent addresses or other values that are guaranteed not to be

negative

– Unsigned value

– An n-bit unsigned binary integer has a range from 0 to 2n - 1

• Signed binary integers
– Typically used to represent data that is either positive or negative

– The most common representation the 2's complement format

– Signed value (2’s complement)

– An n-bit 2’s complement binary integer has a range from - 2n-1 to 2n-1 - 1

Binary Number Representation – MIPS

Cluj-Napoca 3

1

0

2
n

i

i

i

value b




 

2
1

1

0

2 2
n

n i

n i

i

value b b








    

2024

• 32-bit signed numbers
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten

0000 0000 0000 0000 0000 0000 0000 0001two = +1ten

0000 0000 0000 0000 0000 0000 0000 0010two = +2ten

...

0111 1111 1111 1111 1111 1111 1111 1110two = +2,147,483,646ten

0111 1111 1111 1111 1111 1111 1111 1111two = +2,147,483,647tenmax_int

1000 0000 0000 0000 0000 0000 0000 0000two = –2,147,483,648tenmin_int

1000 0000 0000 0000 0000 0000 0000 0001two = –2,147,483,647ten

1000 0000 0000 0000 0000 0000 0000 0010two = –2,147,483,646ten

...

1111 1111 1111 1111 1111 1111 1111 1101two = –3ten

1111 1111 1111 1111 1111 1111 1111 1110two = –2ten

1111 1111 1111 1111 1111 1111 1111 1111two = –1ten

Binary Number Representation – MIPS

Cluj-Napoca 4

2024

• 2’s complement negation
– Invert all bits and add one to the least significant bit
– 2’s complement representation: 6 = 0110 -4 = (not 0100 + 0001) = 1100

• 2’s complement addition
– Add the corresponding bits of both numbers with carry between bits

– Unsigned and 2’s complement addition are performed in exactly the same
way, only the overflow detection differs

• 2’s complement subtraction
– Negate the second number and then perform addition

Binary Number Operations – MIPS

Cluj-Napoca 5

3 = 0011 -3 = 1101 -3 = 1101 3 = 0011

+ 2 = 0010 +-2 = 1110 + 2 = 0010 + -2 = 1110

- - - - - - - - - - - - - - - -

3 = 0011 -3 = 1101 -3 = 1101 3 = 0011

- 2 = 0010 - -2 = 1110 -2 = 0010 - -2 = 1110

- - - - - - - - - - - - - - - -

2024

• Overflow
– The sum or difference can go beyond the range of representable numbers

– Overflow: the result is too large or too small for proper representation

– Overflow generates an incorrect result that should be detected

– Overflow occurs when the resulting value affects the sign

• 2 positive numbers and the sum is negative

• 2 negative numbers and the sum is positive

Binary Number Operations – MIPS

Cluj-Napoca 6

5 = 0101 -5 = 1011 +5 = 0101 -5 = 1011

+ 6 = 0110 +-6 = 1010 -- 6 = 1010 - +6 = 0110

- - - - - - - - - - - - - - - -

-5=1011 5=0101 -5=1011 5=0101

Operation A B Result indicating overflow
A + B >= 0 >= 0 < 0
A + B < 0 < 0 >= 0
A – B >= 0 < 0 < 0
A – B < 0 >= 0 >= 0

No overflow when
• signs are different for addition
• signs are the same for subtraction

2024

• Overflow detection – 2’s complement numbers
– When adding 2's complement numbers, overflow will occur only if

• the numbers being added have the same sign

• the sign of the result is different

– If cn-1 and cn represent the input and output carry signals for the MSB

Binary Number Operations – MIPS

Cluj-Napoca 7

an-1 an-2 ... a1 a0

+ bn-1 bn-2… b1 b0

= sn-1 sn-2 … s1 s0

1 1 1 1 1 1n n n n n noverflow a b s a b s          

1n noverflow c c  

Overflow means 

Overflow detection 

1c !n nc 

 = xor Coverflow CarryOut MSB arryInMSB

Operands Result cn sn-1 an-1 bn-1 cn-1 event ?

Positive
Positive 0 0 0 0 0 cn=cn-1 no overflow

Negative 0 1 0 0 1 cn!=cn-1 overflow

Negative
Positive 1 0 1 1 0 cn!=cn-1 overflow

Negative 1 1 1 1 1 cn=cn-1 no overflow

2024

• Overflow detection – unsigned numbers
– Unsigned numbers – overflow carry out of the most significant bit

• MIPS architecture
– Overflow exceptions are signaled for 2’s complement arithmetic

• add, sub, addi

– Overflow exceptions are not signaled for unsigned arithmetic

• addu, subu, addiu

Binary Number Operations – MIPS

Cluj-Napoca 8

noverflow c

1001 = 9
+ 1000 = 8

- - - - -

= 0001 = 1
cn = 1

2024

• Set on Less Than – SLT
– Signed integers less than condition SF != OF
– Set-on-Less Than Signed (SLT) instruction

slt $rd, $rs, $rt // R-type

If(RF[rs] < RF[rt])  RF[rd] 1 else RF[rd] 0

If(RF[rs] – RF[rt]) (SF xor OF) = 1  RF[rd] 1 else RF[rd] 0

• Set on Less Than Unsigned – SLTU
– Unsigned integer numbers

sltu $rd, $rs, $rt // R-type

If(RF[rs] < RF[rt])  RF[rd] 1 else RF[rd] 0

If(RF[rs] – RF[rt]) CF = 0  RF[rd] 1 else RF[rd] 0

• SLT or SLTU can be accomplished by
– subtracting $rt from $rs
– setting the least significant bit of the result to ((SF xor OF) or ~CF) and

setting all other bits to zero

Binary Number Operations – MIPS

Cluj-Napoca 9

sign xor overflow

2024

• The Design Process
– “To Design Is To Represent”

– Design Begins With Requirements

• Functional capabilities

• Performance characteristics

– Design Finishes as Assembly

– Design understood in terms of components and how they have been
assembled

• Top-Down decomposition of complex functions (behaviors) into more primitive
ones

• Bottom-up composition of primitive building blocks into more complex
assemblies

Arithmetic Logic Unit Design

Cluj-Napoca 10

2024

• The ALU should support a subset of arithmetic-logic instructions of
MIPS.

Arithmetic Logic Unit Design

Cluj-Napoca 11

Type opcode function

addi 001000 xxxxxx

addiu 001001 xxxxxx

slti 001010 xxxxxx

sltiu 001011 xxxxxx

andi 001100 xxxxxx

ori 001101 xxxxxx

xori 001110 xxxxxx

lui 001111 xxxxxx

beq 000100 xxxxxx

Type opcode function

add 000000 100000

addu 000000 100001

sub 000000 100010

subu 000000 100011

and 000000 100100

or 000000 100101

xor 000000 100110

nor 000000 100111

slt 000000 101010

sltu 000000 101011
beq – specific for ALU operation

2024

• MIPS ALU requirements for a limited subset of instructions
– add, addu, sub, subu, addi, addiu 2’s complement adder / subtractor with

overflow detection (signed arithmetic generates overflow detection)

– and, andi, or, ori, xor, xori, nor Logical AND, OR, XOR, NOR

– slt, sltu, slti, sltiu 2’s complement adder, check sign/overflow of result

– beq zero detector

• MIPS arithmetic-logical instruction formats

Designing an ALU for the MIPS ISA

Cluj-Napoca 12

2024

• Design Trick 1: Divide et Impera
– Break the problem into simpler ones

– Solve them and glue together the solution

– Example:

• Sign / Zero Extended immediates before the ALU

• No specific ALU ops for Immediates: addi, addiu, executed as add, addu

• Refined requirements (Functional Specification)
– ALU inputs:

• 2 x 32-bit operands A, B

• 4-bit operation code

– ALU outputs:

• 32-bit result

• Sign, Carry, Overflow flags

– ALU operations:

• add, addu, sub, subu, and, or, xor, nor, slt, sltu

Arithmetic Logic Unit Design

Cluj-Napoca 13

2024

• Design Trick 2:
– Take standard digital logic components (AND, OR, +, ...),

– Connect them conform specification, and select the required operation by
MUX (Laboratory version)

• Design trick 3:
– Solve part of the problem and extend it

– Start with AND, OR

Arithmetic Logic Unit Design

Cluj-Napoca 14

2024

• Building a basic Arithmetic Logic Unit
– Construct an ALU from:

• logic gates: AND, OR, XOR, etc.

• inverters

• multiplexers

– MIPS word is 32 bits wide

 we need a 32-bit-wide ALU

– Connect 32 x 1-bit ALUs to create the MIPS ALU

Arithmetic Logic Unit Design

Cluj-Napoca 15

a
b

c

a c

c

a

b

s

0

1

AND

Basic ALU Building Blocks

OR

NOT

MUX
• 1-bit ALU Design

– Start with logical operations

 they map directly onto the Hardware components

1-bit ALU for Logical AND and Logical OR
The multiplexer selects the Results as:

• a AND b
• a OR b [1]

2024

S = A xor B
C = A and B

A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

A B Cin Cout S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

• The next function to include is addition
– HALF ADDER / FULL ADDER

Arithmetic Logic Unit Design

Cluj-Napoca 16

S = A xor B xor Cin

Cout = A and B or A and Cin or B and Cin = A and B or Cin and (A xor B)

Observation for Full Adder:
Cin and (A or B)Cin and (A xor B)

The difference between or/xor is
in the A=B=1 case (covered by A
and B)

1-bit Full Adder Symbol

2024

1-bit ALU for AND, OR, ADD; Operation – 2bits

Arithmetic Logic Unit Design

Cluj-Napoca 17

32-bit ALU built with 32 x 1-bit ALUs

4-bit Ripple Carry Adder:
Cin Cout between stages

C
arry p

ro
p

agatio
n

 d
elay

[1]

[1]

2024

• Additional Operations: subtraction
– a – b = a + (-b)

– Subtraction is the same as adding the negative version of an operand

– 2’s complement negate invert each bit and then add 1

– To invert each bit, we simply add a 2:1 mux that chooses between b and ത𝑏

Arithmetic Logic Unit Design

Cluj-Napoca 18

1-bit ALU with subtraction

1a b a b   

Operation = 2
Binvert = 1
CarryIn = 1

Subtraction  Adding 2’s complement of b to a

[1]

2024

• Additional operations: NOR
– Instead of adding a separate NOR gate, reuse the hardware already present

in the ALU

– Because we already have AND and ത𝑏, we need to add ത𝑎 to the ALU

Arithmetic Logic Unit Design

Cluj-Napoca 19

: NOR a OR b a AND b De Morgan’s Theorems

1-bit ALU: AND, OR, NOR, ADD, SUB

Ainvert = 1
Binvert = 1
Operation = 0

 we get (a NOR b) instead of (a AND b)

What about NAND?  homework
[1]

2024

• Overflow Detection

Arithmetic Logic Unit Design

Cluj-Napoca 20

 = xor Coverflow CarryOut MSB arryInMSB

1-bit ALU for the MSB bit with
overflow detection

CPU action at an overflow, two methods:

1. Ignore it MIPS for unsigned instructions
• Do not detect overflow for

• addu, addiu, subu
• addiu still sign-extends!
• sltu, sltiu for unsigned comparisons

2. Recognize it MIPS for signed Instructions
• Generate a trap so that the programmer

can try to deal with it
• An exception (interrupt) occurs
• Control jumps to predefined address

for exception
• Interrupted address is saved for

possible resumption
• MIPS instructions: add, sub

[1]

2024

• Additional operations: set on less than instruction (slt)
– the slt operation produces 1, if RF[rs] < RF[rt], and 0 otherwise

– slt will set all bits except the LSB to 0

– the LSB set according to the comparison RF[rs] < RF[rt]

– expand the 3-input MUX of the ALU to add a new input for: Less slt result

– Connect 0 to the Less inputs: Less[31:1] = 0

– How to set the Less[0]?

• Subtract b from a. If the difference is negative, then a < b

• Analyze Bit 31 of results Sign Bit

– Sign = 1 negative result (a < b) / Sign = 0 positive result (a > b)

• Analyze Carry Flag CF

– SLTU (Unsigned)

• Less[0] Set ~CF

– SLT (Signed)

• Less[0] Set Sign xor Overflow

Arithmetic Logic Unit Design

Cluj-Napoca 21

2024

Arithmetic Logic Unit Design

Cluj-Napoca 22

1-bit ALU for the MSB bit with overflow detection and
set generation

32-bit ALU built with 32 x 1-bit ALUs
Less[31:1] = 0, Less[0] = Set form ALU31
Subtraction operations: CarryIn=Binvert = 1
Addition or logical operations: CarryIn=Binvert = 0
We can simplify the control: CarryIn = Binvert = Bnegate

[1]

[1]

2024

• Additional operations: test for Conditional Branch Instructions

Arithmetic Logic Unit Design

Cluj-Napoca 23

beq – Branch if 2 registers are equal
bne – Branch if 2 registers are not equal

Equality test:
 subtract b from a and then test if the
result is 0

Add specific hardware to test if the
result is 0: NOR (negated OR)

 (31 1 0)Zero Result or or Result or Result 

Final 32-bit ALU with Zero detector,
overflow and Set-Less

[1]

2024

Arithmetic Logic Unit Control

Cluj-Napoca 24

ALU control lines – ALUCtrl
ALU Operation

Ainvert Bnegate Operation
0 0 0 0 AND
0 0 0 1 OR
0 0 1 0 ADD
0 1 1 0 SUBTRACT
0 1 1 1 SET ON LESS THAN
1 1 0 0 NOR

ALU Control Lines and the corresponding ALU operation ALU Symbol

ALU Control Unit Design

• Multilevel decoding
• Hierarchical control
• Pass the function field to the ALU Control and have a local decoder there
• Reduces the size of the Main Control
• Using several smaller control units may increase the speed of the control

unit

2024

Arithmetic Logic Unit Control

Cluj-Napoca 25

Instruction
Opcode

ALUOp
Instruction
Operation

Function
Field

Desired
ALU Operation

ALU
Control

LW 00 load word XXXXXX add 0010

SW 00 store word XXXXXX add 0010

Branch equal 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 and 100100 and 0000

R-type 10 or 100101 or 0001

R-type 10 set on less than 101010 set on less than 0111

MIPS-lite ALU Control

ALU Control Inputs
• 6-bit function field from the R-type instruction format
• 2-bit ALUOp given by the Main Control, according to opcode field of the instructions.

The size of ALUOp can be increased if more MIPS instructions are implemented.

2024

• Multiplication
– mult, multu – signed and unsigned 32-bit multiplication

– Paper and pencil unsigned example: 1000 (8) * 1001 (9) = 0100 1000 (72)

Additional MIPS ALU Requirements

Cluj-Napoca 26

Multiplicand 1 0 0 0

Multiplier 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

Product 0 1 0 0 1 0 0 0

! m bits * n bits m + n bits result

Binary makes it easy:
• Multiplier i bit = 0  place 0 (0 x multiplicand)
• Multiplier i bit = 1  place a copy (1 x multiplicand)

Multiplication is just a lot of additions and shifts!

Multiplier implementations:
• Combinational
• Pipelined
• Multi-Cycle (shift-add cycles)

2024

• Unsigned combinational multiplier

Additional MIPS ALU Requirements

Cluj-Napoca 27

Ripple Carry Array Multiplier
• At each stage shift left X (multiplicand) (<< 1 = x 2)
• Use next bit of Y (multiplier) to determine whether to add in the shifted multiplicand or 0
• Accumulate the partial products
• Critical path is marked in red
• Pipelined versions improve the throughput of the multiplier

2024

• Multi-cycle (shift-add) Multiplier
– Implements the multiplication algorithm for binary numbers

– No separate multiplier register

– Multiplier placed on right side of 64-bit Product register

– It has N (number of bits) iterations for summing up the partial products

Additional MIPS ALU Requirements

Cluj-Napoca 28

Multi-cycle (shift-add) Multiplier block diagram

2024

Additional MIPS ALU Requirements

Cluj-Napoca 29

Multiplication Algorithm ASM chart

Observations:
• 2 steps per bit because Shift by Shift register (Product & Multiplier)
• MIPS registers Hi and Lo are left and right half of Product
• MIPS instruction multu places the product in the Hi and Lo registers

2024

Additional MIPS ALU Requirements

Cluj-Napoca 30

Example: 0010 * 0011

Iteration Step Multiplicand Product Next

0 Init 0010 0000 0011 Product(0)=’1’  add

1
1a
2 0010

0010 0011
0001 0001

Shift Right
Product(0)=’1’  add

2
1a
2

0011 0001
0001 1000

Shift Right
Product(0)=’0’  no add

3
1a
2

0001 1000
0000 1100

Shift Right
Product(0)=’0’  no add

4
1a
2

0000 1100
0000 0110

Shift Right
Done

What about signed multiplication?
1. Easiest solution is to make both positive & remember whether to complement product

when done (leave out the sign bit, run for 31 steps).
2. Apply definition of 2’s complement: need to sign-extend partial products and subtract at

the end.
3. Booth’s algorithm.

2024

• Booth’s algorithm
– an elegant way to multiply signed numbers using the same hardware as

before and save cycles
– can handle multiple bits at a time

• Motivation for Booth’s Algorithm
– Booth algorithm gives a procedure for multiplying binary integers in 2’s

complement representation
– Originally invented for Speed (when shift was faster than add)
– Idea: string of 1’s …011…10… has as value the sum

– Replace a string of 1s in the multiplier with an initial subtract when we first
see a one and then later add after the last one

Additional MIPS ALU Requirements

Cluj-Napoca 31

1 12 2 ... 2 2 2n n m n m     

Current bit Bit to the right Explanation Example Op
1 0 Begins run of 1s 0001111000 sub
1 1 Middle of run of 1s 0001111000 none
0 1 End of run of 1s 0001111000 add
0 0 Middle of run of 0s 0001111000 none

-1

+10000

01111

2024

• Booth’s algorithm
1. Depending on the current and previous bits, do one of the following:

00: Middle of a string of 0s – no arithmetic operations.

01: End of a string of 1s – add the multiplicand to the left half of the product.
10: Beginning of a string of 1s – subtract the multiplicand from the left half of the product.
11: Middle of a string of 1s – no arithmetic operation

2. As in the previous algorithm, shift the Product register right (arithmetic) 1 bit

• Booth Multiply
– Modify Step 1 of the Shift/Add Multiply algorithm to consider 2 bits of the multiplier:

– Instead of two alternatives, now there are four

• The current bit and the bit to the right (i.e., the current bit of the previous step)

– Modify Step 2 of Shift/Add Multiply algorithm to sign extend when the product is
shifted right (arithmetic right shift, rather than logical right shift) because the product
is a signed number.

– Shift/Add Multiply algorithm and Booth share the same hardware, except Booth
requires one extra flip-flop to remember the bit to the right of the current bit in the
product register – which is the bit pushed out by the preceding right shift

Additional MIPS ALU Requirements

Cluj-Napoca 32

2024

Additional MIPS ALU Requirements

Cluj-Napoca 33

• Booth Example 1: (2 * 7)
Multiplicand m = 0010
Product p = 0000 0111

0000 1110 = 14

Iteration Multiplicand Product LSB-1 Next

0. Init 0010 0000 0111 0 10  sub

1a. P = P – m -m = 1110 1110 0111 0 Shift Right Arithmetic

1b. 0010 1111 0011 1 11  nop, shift

2. 0010 1111 1001 1 11  nop, shift

3. 0010 1111 1100 1 01  add

4a. 0010 0001 1100 1 Shift

4b. 0010 0000 1110 0 Done

2024

Additional MIPS ALU Requirements

Cluj-Napoca 34

• Booth Example 2: (2 * -3)
m = 0010 3=0011, -3 = 1101
p = 0000 1101

1111 1010 = -6

Iteration Multiplicand Product LSB-1 Next

0. Init 0010 0000 1101 0 10  sub

1a. P = P – m -m = 1110 1110 1101 0 Shift Right Arithmetic

1b. 0010 1111 0110 1 01  add

2a. 0001 0110 1 Shift Right Arithmetic

2b. 0000 1011 0 10  sub

3a. P = P – m -m = 1110 1110 1011 0 Shift Right Arithmetic

3b. 0010 1111 0101 1 11 nop

4a. 0010 1111 0101 1 Shift Right Arithmetic

4b. 0010 1111 1010 1 Done

2024

• Shifters
– sll, srl, sra MIPS instructions – shift left/right/right arithmetic by 0 to 31 bits

Additional MIPS ALU Requirements

Cluj-Napoca 35

Logical: value shifted in is always "0" Arithmetic: on right shift the sign bit is extended

Note: these are single bit shifts. Instructions can request 0 to 31 bits to be shifted

Combination shifter implemented with MUXs

How many levels for a 32-bit shifter?

If we added Right-to-left connections we could support Rotate operations (not implemented in MIPS)

2024

• Sign / Zero Extender
– MIPS instructions use:

• Zero Extended (logic) operands ori: RF[rt] RF[rs] | Z_Ext(imm)

• Sign Extended (arithmetic) operands lw: RF[rt]M[RF[rs] + S_Ext(imm)]

– Z_Ext (zero extension):

• The Extender takes a 16-bit number, imm[15:0] and extends it with 0’s
(extension in unsigned form) if the control line ExtOp = 0

• Z_Ext(imm16) = 031…..016||imm15….imm0

– S_Ext (sign extension):

• The Extender takes a 16-bit number, imm[15:0] and extends it with the imm15 bit
if the control line ExtOp = 1

• S_Ext(imm16) = 031…..016||imm15….imm0 if imm15 = 0

• S_Ext(imm16) = 131…..116||imm15….imm0 if imm15 = 1

Additional MIPS ALU Requirements

Cluj-Napoca 36

2024

• Design an 8-bit ALU for the following operations: A + B, A – B,
IncrA, DecrA, PassA and NegateA. Use a single adder circuit. Show
the schematic with control signals and a table with control signal
values for the required operations.

• Design an Add/Subtract unit that can work with 8, 16 and 32-bit
data. You are given 32x1-bit full adders and the necessary auxiliary
circuits. Show the block diagram and the control signals for 4x8-bit,
2x16-bit, 1x32-bit Add/Subtract operations.

• Describe the Booth multiplication method. Give a numerical
example.

Problems – Homework

Cluj-Napoca 37

2024

1. D. A. Patterson, J. L. Hennessy, “Computer Organization and
Design: The Hardware/Software Interface”, 5th edition, ed.
Morgan–Kaufmann, 2013.

2. D. A. Patterson and J. L. Hennessy, “Computer Organization and
Design: A Quantitative Approach”, 5th edition, ed. Morgan-
Kaufmann, 2011.

3. MIPS32™ Architecture for Programmers, Volume I: “Introduction
to the MIPS32™ Architecture”.

4. MIPS32™ Architecture for Programmers Volume II: “The MIPS32™
Instruction Set”.

References

Cluj-Napoca 38

