

Technical University of Cluj-Napoca Computer Science Department

Computer Architecture

Lecturer: Mihai Negru 2nd Year, Computer Science

Lecture 5: ALU Design

http://users.utcluj.ro/~negrum/

Sign Magnitude	One's Complement	Two's Complement				
000 = +0	000 = +0	000 = +0				
001 = +1	001 = +1	001 = +1				
010 = +2	010 = +2	010 = +2				
011 = +3	011 = +3	011 = +3				
100 = -0	100 = -3	100 = -4				
101 = -1	101 = -2	101 = -3				
110 = -2	110 = -1	110 = -2				
111 = -3	111 = -0	111 = -1				

- 2's complement advantages
 - Subtract can share the same logic as add
 - Sign bit can be treated as a normal number bit in addition
- 1's complement disadvantage
 - Two zero representations

Unsigned binary integers

- Typically represent addresses or other values that are guaranteed not to be negative
- Unsigned value

$$value = \sum_{i=0}^{n-1} b_i \cdot 2^i$$

- An n-bit unsigned binary integer has a range from 0 to 2ⁿ 1
- Signed binary integers
 - Typically used to represent data that is either positive or negative
 - The most common representation \rightarrow the 2's complement format
 - Signed value (2's complement)

$$value = -b_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} b_i \cdot 2^i$$

- An n-bit 2's complement binary integer has a range from - 2^{n-1} to 2^{n-1} - 1

32-bit signed numbers

 $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ two = 0_{ten}$ $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{two} = +1_{ten}$ $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010_{two} = +2_{ten}$

$$\begin{aligned} &1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1101_{two} = -3_{ten} \\ &1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1110_{two} = -2_{ten} \\ &1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ two = -1_{ten} \end{aligned}$$

...

. . .

- 2's complement negation
 - Invert all bits and add one to the least significant bit
 - 2's complement representation: 6 = 0110
 -4 = (not 0100 + 0001) = 1100
- 2's complement addition
 - Add the corresponding bits of both numbers with carry between bits

3 = 0011	-3 = 1101	-3 = 1101	3 = 0011
+ 2 = 0010	+-2 = 1110	+ 2 = 0010	+ -2 = 1110

- Unsigned and 2's complement addition are performed in exactly the same way, only the overflow detection differs
- 2's complement subtraction
 - Negate the second number and then perform addition

3 = 0011	-3 = 1101	-3 = 1101	3 = 0011
- 2 = 0010	2 = 1110	-2 = 0010	2 = 1110

• Overflow

- The sum or difference can go beyond the range of representable numbers
- Overflow: the result is too large or too small for proper representation

5 = 0101	-5 = 1011	+5 = 0101	-5 = 1011
+ 6 = 0110	+-6 = 1010	6 = 1010	- +6 = 0110
-5=1011	5=0101	-5=1011	5=0101

- Overflow generates an incorrect result that should be detected
- Overflow occurs when the resulting value affects the sign
 - 2 positive numbers and the sum is negative
 - 2 negative numbers and the sum is positive

Operation	А	В	Result indicating overflow
A + B	>= 0	>= 0	< 0
A + B	< 0	< 0	>= 0
A – B	>= 0	< 0	< 0
A – B	< 0	>= 0	>= 0

No overflow when

- signs are different for addition
- signs are the same for subtraction

 $a_{n-1} a_{n-2} \dots a_1 a_0$

 $+ b_{n-1} b_{n-2} \dots b_1 b_0$

 $= S_{n-1} S_{n-2} \dots S_1 S_0$

- Overflow detection 2's complement numbers
 - When adding 2's complement numbers, overflow will occur only if
 - the numbers being added have the same sign
 - the sign of the result is different

$$overflow = a_{n-1} \cdot b_{n-1} \cdot \overline{s_{n-1}} + \overline{a_{n-1}} \cdot \overline{b_{n-1}} \cdot s_{n-1}$$

– If c_{n-1} and c_n represent the input and output carry signals for the MSB

Operands	Result	C _n	S _{n-1}	a _{n-1}	b _{n-1}	C _{n-1}	event?
Positive	Positive	0	0	0	0	0	$c_n = c_{n-1} \Leftrightarrow no overflow$
	Negative	0	1	0	0	1	c _n !=c _{n-1} ⇔ overflow
Negative	Positive	1	0	1	1	0	c _n !=c _{n-1} ⇔ overflow
	Negative	1	1	1	1	1	$c_n = c_{n-1} \Leftrightarrow no overflow$

Overflow means

$$\rightarrow$$
 $c_n! = c_{n-1}$

Overflow detection

→ *overflow* = *CarryOut MSB* xor *CarryInMSB*

$$overflow = c_n \otimes c_{n-1}$$

- Overflow detection unsigned numbers
 - Unsigned numbers overflow \rightarrow carry out of the most significant bit

 $overflow = c_n$ 1001 = 9 + 1000 = 8 = 0001 = 1 $c_n = 1$

- MIPS architecture
 - Overflow exceptions are signaled for 2's complement arithmetic
 - add, sub, addi
 - Overflow exceptions are not signaled for unsigned arithmetic
 - addu, subu, addiu

sign xor overflow

- Set on Less Than SLT
 - Signed integers less than condition \rightarrow SF != OF \rightarrow
 - Set-on-Less Than Signed (SLT) instruction

// R-type slt \$rd, \$rs, \$rt If(RF[rs] < RF[rt]) $If(RF[rs] - RF[rt]) \rightarrow (SF \text{ xor } OF) = 1 \rightarrow RF[rd] \leftarrow 1 \text{ else } RF[rd] \leftarrow 0$

- \rightarrow RF[rd] \leftarrow 1 else RF[rd] \leftarrow 0
- Set on Less Than Unsigned SLTU
 - Unsigned integer numbers sltu \$rd, \$rs, \$rt // R-type If(RF[rs] < RF[rt]) $If(RF[rs] - RF[rt]) \rightarrow CF = 0$

- \rightarrow RF[rd] \leftarrow 1 else RF[rd] \leftarrow 0
- \rightarrow RF[rd] \leftarrow 1 else RF[rd] \leftarrow 0
- SLT or SLTU can be accomplished by
 - subtracting \$rt from \$rs
 - setting the least significant bit of the result to ((SF xor OF) or ~CF) and setting all other bits to zero

- The Design Process
 - "To Design Is To Represent"
 - Design Begins With Requirements
 - Functional capabilities
 - Performance characteristics
 - Design Finishes as Assembly
 - Design understood in terms of components and how they have been assembled
 - Top-Down *decomposition* of complex functions (behaviors) into more primitive ones
 - Bottom-up composition of primitive building blocks into more complex assemblies

The ALU should support a subset of arithmetic-logic instructions of MIPS.

Туре	opcode	function
addi	001000	xxxxxx
addiu	001001	xxxxxx
slti	001010	xxxxxx
sltiu	001011	xxxxxx
andi	001100	xxxxx
ori	001101	xxxxx
xori	001110	xxxxxx
lui	001111	xxxxxx
beq	000100	xxxxxx

beq – specific for ALU operation

Туре	opcode	function
add	000000	100000
addu	000000	100001
sub	000000	100010
subu	000000	100011
and	000000	100100
or	000000	100101
xor	000000	100110
nor	000000	100111
slt	000000	101010
sltu	000000	101011

- MIPS ALU requirements for a limited subset of instructions
 - add, addu, sub, subu, addi, addiu \rightarrow 2's complement adder / subtractor with overflow detection (signed arithmetic generates overflow \rightarrow detection)
 - and, andi, or, ori, xor, xori, nor \rightarrow Logical AND, OR, XOR, NOR
 - slt, sltu, slti, sltiu \rightarrow 2's complement adder, check sign/overflow of result
 - − beq \rightarrow zero detector
- MIPS arithmetic-logical instruction formats

3	1 26	25 21	20 16	15 11	10 6	5 0			
	opcode	rs	rt	rd sa		function			
	6	5	5	5	5	6			
3	1 26	25 21	_2016	15		0			
	opcode	rs	rt	add	address / immediate				
	6	5	5	16					

- Design Trick 1: Divide et Impera
 - Break the problem into simpler ones
 - Solve them and glue together the solution
 - Example:
 - Sign / Zero Extended immediates before the ALU
 - No specific ALU ops for Immediates: addi, addiu, executed as add, addu
- Refined requirements (Functional Specification)
 - ALU inputs:
 - 2 x 32-bit operands A, B
 - 4-bit operation code
 - ALU outputs:
 - 32-bit result
 - Sign, Carry, Overflow flags
 - ALU operations:
 - add, addu, sub, subu, and, or, xor, nor, slt, sltu

- Design Trick 2:
 - Take standard digital logic components (AND, OR, +, ...),
 - Connect them conform specification, and select the required operation by MUX (Laboratory version)

- Design trick 3:
 - Solve part of the problem and extend it
 - Start with AND, OR

- Building a basic Arithmetic Logic Unit
 - Construct an ALU from:
 - logic gates: AND, OR, XOR, etc.
 - inverters
 - multiplexers
 - MIPS word is 32 bits wide
 - \rightarrow we need a 32-bit-wide ALU
 - Connect 32 x 1-bit ALUs to create the MIPS ALU
- 1-bit ALU Design
 - Start with logical operations
 - \rightarrow they map directly onto the Hardware components
 - 1-bit ALU for Logical AND and Logical OR The multiplexer selects the Results as:
 - a AND b
 - a OR b

Operation

S

0

1

1

0

The next function to include is addition

– HALF ADDER / FULL ADDER

Observation for Full Adder: C_{in} and (A or B) $\rightarrow C_{in}$ and (A xor B)

The difference between or/xor is in the A=B=1 case (covered by A and B)

А

1-bit Full Adder Symbol

 $S = A \text{ xor } B \text{ xor } C_{in}$

 C_{out} = A and B or A and C_{in} or B and C_{in} = A and B or C_{in} and (A xor B)

Arithmetic Logic Unit Design

- Additional Operations: subtraction
 - -a-b=a+(-b)
 - Subtraction is the same as adding the negative version of an operand
 - 2's complement negate \rightarrow invert each bit and then add 1
 - To invert each bit, we simply add a 2:1 mux that chooses between b and b

$$a-b=a+\overline{b}+1$$

Operation = 2Binvert = 1

CarryIn = 1

Subtraction \Leftrightarrow Adding 2's complement of b to a

- Additional operations: <u>NOR</u>
 - Instead of adding a separate NOR gate, reuse the hardware already present in the ALU

NOR: $\overline{a \ OR \ b} = \overline{a} \ AND \ \overline{b}$ De Morgan's Theorems

- Because we already have AND and \overline{b} , we need to add \overline{a} to the ALU

Ainvert = 1 Binvert = 1 Operation = 0

 \rightarrow we get (a NOR b) instead of (a AND b)

What about NAND? \rightarrow homework

• **Overflow Detection** *overflow = CarryOut MSB* xor CarryInMSB

1-bit ALU for the MSB bit with overflow detection

CPU action at an overflow, two methods:

- 1. Ignore it \rightarrow MIPS for unsigned instructions
 - Do not detect overflow for
 - addu, addiu, subu
 - addiu still sign-extends!
 - sltu, sltiu for unsigned comparisons
- 2. Recognize it \rightarrow MIPS for signed Instructions
 - Generate a trap so that the programmer can try to deal with it
 - An exception (interrupt) occurs
 - Control jumps to predefined address for exception
 - Interrupted address is saved for possible resumption
 - MIPS instructions: add, sub

- Additional operations: <u>set on less than instruction (slt)</u>
 - the slt operation produces 1, if RF[rs] < RF[rt], and 0 otherwise
 - slt will set all bits except the LSB to 0
 - the LSB set according to the comparison RF[rs] < RF[rt]</p>
 - expand the 3-input MUX of the ALU to add a new input for: Less \rightarrow slt result
 - Connect 0 to the Less inputs: Less[31:1] = 0
 - How to set the Less[0]?
 - Subtract b from a. If the difference is negative, then a < b
 - Analyze Bit 31 of results \rightarrow Sign Bit
 - − Sign = 1 → negative result (a < b) / Sign = 0 → positive result (a > b)
 - Analyze Carry Flag CF
 - SLTU (Unsigned)
 - Less[0] ← Set ← ~CF
 - SLT (Signed)
 - Less[0] ← Set ← Sign xor Overflow

Arithmetic Logic Unit Design

Additional operations: test for <u>Conditional Branch Instructions</u>

Arithmetic Logic Unit Control

ALU control lines – ALUCtrl			Ctrl	ALLOngration	ALUCtrl
Ainvert	Bnegate	Oper	ation	ALU Operation	
0	0	0	0	AND	
0	0	0	1	OR	
0	0	1	0	ADD	Overflow
0	1	1	0	SUBTRACT	h
0	1	1	1	SET ON LESS THAN	
1	1	0	0	NOR	CarryOut

ALU Control Lines and the corresponding ALU operation

ALU Control Unit Design

- Multilevel decoding
 - Hierarchical control
 - Pass the function field to the ALU Control and have a local decoder there
 - Reduces the size of the Main Control
 - Using several smaller control units may increase the speed of the control unit

ALU Symbol

ALU

Arithmetic Logic Unit Control

Instruction Opcode	ALUOp	Instruction Operation	Function Field	Desired ALU Operation	ALU Control
LW	00	load word	XXXXXX	add	0010
SW	00	store word	XXXXXX	add	0010
Branch equal	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
R-type	10	subtract	100010	subtract	0110
R-type	10	and	100100	and	0000
R-type	10	or	100101	or	0001
R-type	10	set on less than	101010	set on less than	0111

MIPS-lite ALU Control

ALU Control Inputs

- 6-bit function field from the R-type instruction format
- 2-bit ALUOp given by the Main Control, according to opcode field of the instructions. The size of ALUOp can be increased if more MIPS instructions are implemented.

- mult, multu signed and unsigned 32-bit multiplication
- Paper and pencil unsigned example: 1000 (8) * 1001 (9) = 0100 1000 (72)

	Multiplicand						1	0	0	0
	Multiplier						1	0	0	1
l m hite * n hite 🔺 m ı n hite rocult							1	0	0	0
						0	0	0	0	
					0	0	0	0		
				1	0	0	0			
	Product		0	1	0	0	1	0	0	0
 Binary makes it easy: Multiplier i bit = 0 → place 0 (0 x m Multiplier i bit = 1 → place a copy (1) 	ary makes it easy: Multiplier i bit = 0 → place 0 (0 x multiplicand) Multiplier i bit = 1 → place a copy (1 x multiplicand)		ultipl Com Pipe Mul	ier nbir eline ti-C	imp natio ed Cyclo	oler ona e (s	nei al hift	nta t-ac	tion dd (ns: cycles)
Multiplication is just a lot of additions	and shifts!									

• Unsigned combinational multiplier

Ripple Carry Array Multiplier

- At each stage shift left X (multiplicand) (<< 1 = x 2)
- Use next bit of Y (multiplier) to determine whether to add in the shifted multiplicand or 0
- Accumulate the partial products
- Critical path is marked in red
- Pipelined versions improve the throughput of the multiplier

- Multi-cycle (shift-add) Multiplier
 - Implements the multiplication algorithm for binary numbers
 - No separate multiplier register
 - Multiplier placed on right side of 64-bit Product register
 - It has N (number of bits) iterations for summing up the partial products

Multi-cycle (shift-add) Multiplier block diagram

Additional MIPS ALU Requirements

Observations:

- 2 steps per bit because Shift by Shift register (Product & Multiplier)
- MIPS registers Hi and Lo are left and right half of Product
- MIPS instruction multu places the product in the Hi and Lo registers

Example: 0010 * 0011 Iteration Step Multiplicand Product Next 0 Init 0010 0000 0011 Product(0)='1' \rightarrow add Shift Right 1a 0010 0011 1 Product(0)='1' \rightarrow add 2 0010 0001 0001 0011 0001 Shift Right 1a 2 $Product(0)='0' \rightarrow no add$ 2 0001 1000 1a 0001 1000 Shift Right 3 $Product(0)='0' \rightarrow no add$ 2 0000 1100 1a 0000 1100 Shift Right 4 2 0000 0110 Done

What about signed multiplication?

- 1. Easiest solution is to make both positive & remember whether to complement product when done (leave out the sign bit, run for 31 steps).
- 2. Apply definition of 2's complement: need to sign-extend partial products and subtract at the end.
- 3. Booth's algorithm.

Booth's algorithm

- an elegant way to multiply signed numbers using the same hardware as before and save cycles
- can handle multiple bits at a time
- Motivation for Booth's Algorithm
 - Booth algorithm gives a procedure for multiplying binary integers in 2's complement representation
 - Originally invented for Speed (when shift was faster than add)
 - Idea: string of 1's ...011...10... has as value the sum +10000

$$2^{n} + 2^{n-1} + \dots + 2^{m} = 2^{n+1} - 2^{m}$$
 01111

 Replace a string of 1s in the multiplier with an initial subtract when we first see a one and then later add after the last one

Current bit	Bit to the right	Explanation	Example	Ор
1	0	Begins run of 1s	000111 <mark>10</mark> 00	sub
1	1	Middle of run of 1s	00011 <mark>11</mark> 000	none
0	1	End of run of 1s	00 <mark>01</mark> 111000	add
0	0	Middle of run of 0s	0001111000	none

Booth's algorithm

1. Depending on the current and previous bits, do one of the following:

00: Middle of a string of 0s – no arithmetic operations.

01: End of a string of 1s – add the multiplicand to the left half of the product.

- 10: Beginning of a string of 1s subtract the multiplicand from the left half of the product.
- 11: Middle of a string of 1s no arithmetic operation

2. As in the previous algorithm, shift the Product register right (arithmetic) 1 bit

Booth Multiply

- Modify Step 1 of the Shift/Add Multiply algorithm to consider 2 bits of the multiplier:
- Instead of two alternatives, now there are four
 - The current bit and the bit to the right (i.e., the current bit of the previous step)
- Modify Step 2 of Shift/Add Multiply algorithm to sign extend when the product is shifted right (arithmetic right shift, rather than logical right shift) because the product is a signed number.
- Shift/Add Multiply algorithm and Booth share the same hardware, except Booth requires one extra flip-flop to remember the bit to the right of the current bit in the product register – which is the bit pushed out by the preceding right shift

Booth Example 1: (2 * 7) Multiplicand m = 0010 Product p = 0000 0111

Iteration	Multiplicand	Product	LSB-1	Next
0. Init	0010	0000 <mark>0111</mark>	0	10 → sub
1a. P = P – m	-m = 1110	1110 <mark>0111</mark>	0	Shift Right Arithmetic
1b.	0010	1111 0 <mark>011</mark>	1	11 → nop, shift
2.	0010	1111 10 <mark>01</mark>	1	11 → nop, shift
3.	0010	1111 110 <mark>0</mark>	1	01 \rightarrow add
4a.	0010	0001 110 <mark>0</mark>	1	Shift
4b.	0010	0000 1110	0	Done

0000 1110 = 14

 Booth Example 2: (2 * -3) m = 0010 3=0011, -3 = 1101 p = 0000 1101

Iteration	Multiplicand	Product	LSB-1	Next
0. Init	0010	0000 1101	0	10 → sub
1a. P = P – m	-m = 1110	1110 1101	0	Shift Right Arithmetic
1b.	0010	1111 0 <mark>110</mark>	1	01 \rightarrow add
2a.		0001 0110	1	Shift Right Arithmetic
2b.		0000 1011	0	10 \rightarrow sub
3a. P = P – m	-m = 1110	1110 1011	0	Shift Right Arithmetic
3b.	0010	1111 010 <mark>1</mark>	1	11→ nop
4a.	0010	1111 010 <mark>1</mark>	1	Shift Right Arithmetic
4b.	0010	1111 1010	1	Done

1111 1010 = -6

• Shifters

- sll, srl, sra MIPS instructions - shift left/right/right arithmetic by 0 to 31 bits

How many levels for a 32-bit shifter?

If we added Right-to-left connections we could support Rotate operations (not implemented in MIPS)

- Sign / Zero Extender
 - MIPS instructions use:
 - Zero Extended (logic) operands

ori: $RF[rt] \leftarrow RF[rs] \mid Z Ext(imm)$

Sign Extended (arithmetic) operands lw: RF[rt] ← M[RF[rs] + S Ext(imm)]

- Z_Ext (zero extension):
 - The Extender takes a 16-bit number, imm[15:0] and extends it with 0's (extension in unsigned form) if the control line ExtOp = 0
 - $Z_Ext(imm16) = 0_{31}....0_{16} | |imm_{15}....imm_{0}|$
- S Ext (sign extension):
 - The Extender takes a 16-bit number, imm[15:0] and extends it with the imm₁₅ bit if the control line ExtOp = 1
 - $S_Ext(imm16) = 0_{31}....0_{16} | |imm_{15}....imm_0|$ if $imm_{15} = 0$
 - $S_Ext(imm16) = 1_{31}....1_{16} | |imm_{15}....imm_0|$ if $imm_{15} = 1$

- Design an 8-bit ALU for the following operations: A + B, A B, IncrA, DecrA, PassA and NegateA. Use a single adder circuit. Show the schematic with control signals and a table with control signal values for the required operations.
- Design an Add/Subtract unit that can work with 8, 16 and 32-bit data. You are given 32x1-bit full adders and the necessary auxiliary circuits. Show the block diagram and the control signals for 4x8-bit, 2x16-bit, 1x32-bit Add/Subtract operations.
- Describe the Booth multiplication method. Give a numerical example.

- D. A. Patterson, J. L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface", 5th edition, ed. Morgan–Kaufmann, 2013.
- D. A. Patterson and J. L. Hennessy, "Computer Organization and Design: A Quantitative Approach", 5th edition, ed. Morgan-Kaufmann, 2011.
- 3. MIPS32[™] Architecture for Programmers, Volume I: "Introduction to the MIPS32[™] Architecture".
- MIPS32[™] Architecture for Programmers Volume II: "The MIPS32[™] Instruction Set".