
Computer Architecture

Lecturer: Mihai Negru

2nd Year, Computer Science

Technical University of Cluj-Napoca

Computer Science Department

Lecture 6: Multi-Cycle CPU Design

http://users.utcluj.ro/~negrum/

http://users.utcluj.ro/~negrum/

2024

• Step-by-step Processor DesignMulti cycle MIPS
– Step 1: ISA Abstract RTL

– Step 2: Components of the Data-Path

– Step 3: RTL + Components Data-Path

– Step 4: Data-Path + Abstract RTL Concrete RTL

– Step 5: Concrete RTL Control

• Single Cycle Problems
– Long Cycle Time

• All instructions take as much time as the slowest

• What happens for floating point?

– Waste of area: no component reuse

• One Possible Solution
– use a “smaller” cycle time

– different instructions take different numbers of cycles

Multi-Cycle Processor Design

Cluj-Napoca 2

Multi-Cycle
Data-Path

2024

• Cut the combinational dependency graph and insert registers
– Do the same amount of work in two fast cycles, rather than one slow one

Reducing the Clock Cycle Time

Cluj-Napoca 3

Break up the long combinational stages

Limits on Cycle Time in different stages
Next address logic PC branch ? PC + offset : PC + 4 Address logic computation time
Instruction Fetch IR M[PC] Memory access time
Register Access A RF[rs] Register file access time
ALU operation RF[rd] A + B ALU operation delay

2024

• Break up the instructions into steps, each step takes one cycle
– Balance the amount of work to be done.

– Restrict each cycle to use only one major functional unit.

• At the end of a cycle
– Store values for use in later cycles.

– Introduce additional “internal” registers (not programmer visible).

• Reuse functional units
– ALU used to compute address and to increment PC (beside usual ALU

operations)

– Only one Memory used for Instruction and Data!

• Use a finite state machine (FSM) for control

Multi-Cycle Approach

Cluj-Napoca 4

2024

• Step 1: ISA Abstract RTL
– The same instructions as for the Single-Cycle MIPS

• Step 2: Components of the Data-Path
– Partitioning the Single-Cycle Data-Path

Multi-Cycle CPU Design – Step 1, 2

Cluj-Napoca 5

• Where to add registers?
• What to reuse?
• The clock periods for execution

phases should be balanced

Single-Cycle Data-Path – high level view [1]

2024

• Added registers (not visible to the programmer):
– IR – Instruction Register; MDR – Memory Data Register
– A, B – register file read data registers; ALUOut – ALU output register.
– Data used by subsequent instructions are stored in programmer visible registers (i.e.,

register file, PC) or memory.

• Memory and ALU reused

Multi-Cycle CPU Design – Step 2

Cluj-Napoca 6

Multi-Cycle Data-Path – high level view
[1]

2024

Multi-Cycle CPU Design – Step 2

Cluj-Napoca 7

Multi-Cycle Data-Path derived from Single-Cycle MIPS
[1]

2024

• Step 3: RTL + Components Data-Path
– We connect the components to build the Data-Path, and specify the Control Signals

– Instruction Register (IR): IR[25:21] rs, IR[20:16] rt, IR[15:11] rd

Multi-Cycle CPU Design – Step 3

Cluj-Napoca 8

Multi-Cycle Data-Path with Control Signals

[1]

2024

Multi-Cycle CPU Design – Step 3

Cluj-Napoca 9

Multi-Cycle Data-Path with Control Unit

[1]

2024

Multi-Cycle CPU Design – Step 3

Cluj-Napoca 10

Signal name Effect when deasserted (=0) Effect when asserted (=1)

RegDst
The register destination number for the write
register comes from the rt field (instruction bits
20:16)

The register destination number for the write
register comes from the rd field (instruction bits
15:11)

RegWrite None
The register on the write register input is
written with the value on the Write data input

ALUSrcA The first ALU operand is the PC (default) The first ALU operand is register A (i.e. R[rs])

MemRead None (default)
Content of memory specified by the address
input are put on the memory data output

MemWrite None (default)
Memory contents specified by the address
inputs is replaced by the value on the Write data
input

MemtoReg
The value fed to the register write data input
comes from ALUOut register (default)

The value fed to the register write data input
comes from data memory register (MDR)

IorD
The PC is used to supply the address to the
memory unit (default)

The ALUOut register is used to supply the
address to the memory unit

IRWrite None (default)
The output of the memory is written into the
Instruction Register (IR)

PCWrite None (default)
The PC is written; the source is controlled by PC
source

PCWriteCond None (default)
The PC is written if the Zero output of the ALU is
also active

The Meaning of the 1-bit Control Signals

2024

Multi-Cycle CPU Design – Step 3

Cluj-Napoca 11

Signal Name Value(Binary) Effect

ALUOp

00 The ALU performs an add operation

01 The ALU performs a subtract operation

10
The function field of the instruction determines the ALU
operation (R-Type)

ALUSrcB

00 The second input of the ALU comes from the B register

01 The second input of the ALU is the constant 4

10
The second input of the ALU is the sign-extended 16-bit
immediate filed of the instruction in IR

11
The second input of the ALU is the sign-extended 16-bit
immediate field of IR shifted left 2 bits

PCSource

00 Output of the ALU (PC + 4) is sent to the PC for writing

01
The content of the ALUOut (the branch target address) is
sent to the PC for writing

10
The jump target address (IR[25:0) shifted left 2 bits and
concatenated with PC+4[31:28] is sent to the PC for writing

The Meaning of the 2-bit Control Signals

2024

• Step 4: Data path + Abstract RTL Concrete RTL
– For the multi cycle data path we write the RTL codes of the basic

instructions to establish the necessary Control Signal settings

• Instructions from ISA perspective
– RTL Abstract

• Specifies the instruction independent of a concrete implementation

• Example: arithmetic, R-type instruction

RF[rd] RF[rs] op RF[rt]

– RTL Concrete

• Describes the execution phases of the instruction for a given implementation

• Example: arithmetic, R-type instruction

Multi-Cycle CPU Design – Step 4

Cluj-Napoca 12

T0 IR M[PC]
T1 A RF[rs], B RF[rt]
T2 ALUOut A op B
T3 RF[rd] ALUOut

• We forgot an important part of the definition! PC PC + 4

2024

Multi-Cycle CPU Design – Step 4

Cluj-Napoca 13

T0
IR M[PC],
PC PC + 4;

T1
A RF[rs],
B RF[rt];

ADD & T2 ALUOut A + B;
ADD & T3 RF[rd] ALUOut;

IorD
Mem
Read

Mem
Write

IR
Write

Reg
Dst

Mem
toReg

Reg
Write

Ext
Op

ALU
SrcA

ALU
SrcB

ALU
Op

T0 0 1 0 1 x x 0 x 0 1 add
T1 x 0 0 0 x x 0 x x x x
T2 x 0 0 0 x x 0 x 1 0 func
T3 x 0 0 0 1 0 1 x x x x

add $rd, $rs, $rt

Abstract RTL:
RF[rd] RF[rs] + RF[rt],
PC PC + 4

Concrete RTL:

Note: the operation is defined by the function field

[1]

2024

Multi-Cycle CPU Design – Step 4

Cluj-Napoca 14

Add: T0 IR M[PC], PC PC+4;

2024

Multi-Cycle CPU Design – Step 4

Cluj-Napoca 15

Add: T1 A R[rs], B R[rt];

2024

Multi-Cycle CPU Design – Step 4

Cluj-Napoca 16

Add: ADD & T2 ALUOut A + B;

2024

Multi-Cycle CPU Design – Step 4

Cluj-Napoca 17

Add: ADD & T3 R[rd] ALUOut;

2024

Multi-Cycle CPU Design – Step 4

Cluj-Napoca 18

ori $rs, $rt, imm

Abstract RTL:
RF[rt] RF[rs] | Z_Ext(imm),
PC PC + 4

Concrete RTL:

T0
IR M[PC],
PC PC + 4;

T1
A RF[rs],
B RF[rt];

ORI & T2
ALUOut A |
Z_Ext(imm);

ORI & T3 RF[rt] ALUOut;

IorD
Mem
Read

Mem
Write

IR
Write

Reg
Dst

Mem
toReg

Reg
Write

Ext
Op

ALU
SrcA

ALU
SrcB

ALU
Op

T0 0 1 0 1 x x 0 x 0 1 add
T1 x 0 0 0 x x 0 x x x x
T2 x 0 0 0 x x 0 0 1 2 or
T3 x 0 0 0 0 0 1 x x x x

Note: the operation is defined by the opcode field

[1]

2024

Multi-Cycle CPU Design – Step 4

Cluj-Napoca 19

lw $rt, imm($rs)

Abstract RTL:
RF[rt] M[RF[rs] + S_Ext(imm)],
PC PC + 4

Concrete RTL:

T0
IR M[PC],
PC PC + 4;

T1
A RF[rs],
B RF[rt];

LW & T2
ALUOut A +
S_Ext(imm);

LW & T3 MDR M[ALUOut]
LW & T4 RF[rt] MDR;

IorD
Mem
Read

Mem
Write

IR
Write

Reg
Dst

Mem
toReg

Reg
Write

Ext
Op

ALU
SrcA

ALU
SrcB

ALU
Op

T0 0 1 0 1 x x 0 x 0 1 add
T1 x 0 0 0 x x 0 x x x x
T2 x 0 0 0 x x 0 1 1 2 add
T3 1 1 0 0 x x 0 x x x x
T4 x 0 0 0 0 1 1 x x x x

[1]

2024

Multi-Cycle CPU Design – Step 4

Cluj-Napoca 20

sw $rt, imm($rs)

Abstract RTL:
M[RF[rs] + S_Ext(imm)] RF[rt],
PC PC + 4

Concrete RTL:

T0
IR M[PC],
PC PC + 4;

T1
A RF[rs],
B RF[rt];

SW & T2
ALUOut A +
S_Ext(imm);

SW & T3 M[ALUOut] B

IorD
Mem
Read

Mem
Write

IR
Write

Reg
Dst

Mem
toReg

Reg
Write

Ext
Op

ALU
SrcA

ALU
SrcB

ALU
Op

T0 0 1 0 1 x x 0 x 0 1 add
T1 x 0 0 0 x x 0 x x x x
T2 x 0 0 0 x x 0 1 1 2 add
T3 1 0 1 0 x x 0 x x x x

[1]

2024

Multi-Cycle CPU Design – Step 4

Cluj-Napoca 21

beq $rt, $rs, imm

Abstract RTL:
If(RF[rs] == RF[rt]) then

PC PC + 4 + S_Ext(imm) <<2
else

PC PC + 4

Concrete RTL:

T0
IR M[PC],
PC PC + 4;

T1
A RF[rs],
B RF[rt];

BEQ & T2
ALUOut PC +
S_Ext(imm) << 2;

BEQ & T3 (A == B)
PC ALUOut;

Note: T1 and T2 can be executed in parallel, in the same clock period!

[1]

2024

Multi-Cycle CPU Design – Step 4

Cluj-Napoca 22

beq $rt, $rs, imm

Abstract RTL:
If(RF[rs] == RF[rt]) then

PC PC + 4 + S_Ext(imm) <<2
else

PC PC + 4

Concrete RTL:

T0
IR M[PC],
PC PC + 4;

T1
A RF[rs], B RF[rt],
ALUOut PC +
S_Ext(imm) << 2;

BEQ & T2 (A == B)
PC ALUOut;

IorD
Mem
Read

Mem
Write

IR
Write

Reg
Dst

Mem
toReg

Reg
Write

Ext
Op

ALU
SrcA

ALU
SrcB

ALU
Op

PC
Src

PC
WrCd

PC
Wr

T0 0 1 0 1 x x 0 x 0 1 add 0 0 1
T1 x 0 0 0 x x 0 1 0 3 add x 0 0
T2 x 0 0 0 x x 0 x 1 0 sub 1 1 0

jmp Homework[1]

2024

• Five Execution Phases
– Instruction Fetch

– Instruction Decode and Register Fetch

– Execution, Memory Address Computation, or Branch / Jump Completion

– Memory Access or Arithmetical – Logical instruction completion

– Write-back

• Instructions take from 3 to 5 clock cycles

• In one clock cycle all operations are done in parallel, not sequential!
– T0 IRM[PC] and PC PC+4 are done simultaneously

• Between Clock T1 and Clock T2 the control unit will select the next
step in accordance to the instruction type

Multi-Cycle CPU Design – Summary

Cluj-Napoca 23

2024

Multi-Cycle CPU Design – Summary

Cluj-Napoca 24

Step / Cycle
Action for

R-type
instructions

Action for
ORI

instruction

Action for
memory reference

instructions

Action for
branches

Action for
jumps

T0: Instruction
Fetch

IR M[PC]
PC PC + 4

T1: Instruction
decode /
register Fetch

A RF[IR[25:21]]
B RF[IR[20:16]]

ALUOut PC + S_Ext(IR[15:0] << 2

T2: Execution,
address
computation,
branch / jump
completion

ALUOut
A op B

ALUOut A
OR

Z_Ext(Imm16)

ALUOut A +
S_Ext(IR[15:0])

If (A == B)
PC

ALUOut

PC
PC[31:28]||
IR[25:0] << 2

T3: Memory
access or R-type
completion

RF[IR[15:11]
ALUOut

RF[IR[20:16]]
 ALUOut;

LW: MDR M[ALUOut]
SW: M[ALUOut] B

T4: Memory
read completion

LW: RF[IR[20:16]]
MDR

2024

Multi-Cycle CPU Design – Control Signals

Cluj-Napoca 25

T IorD
Mem
Read

Mem
Write

IR
Write

Reg
Dst

Mem
toReg

Reg
Write

Ext
Op

ALU
SrcA

ALU
SrcB

ALU
Op

PC
Src

PC
WrCd

PC
Wr

T0 0 1 0 1 x x 0 x 0 1 add 0 0 1 IF
T1 x 0 0 0 x x 0 1 1 3 add x 0 0 ID

T2 x 0 0 0 x x 0 x 1 0 fun x 0 0 Ex R-T
T3 x 0 0 0 1 0 1 x x x x x 0 0 Wb R-T

T2 x 0 0 0 x x 0 0 1 2 or x 0 0 Ex ORI
T3 x 0 0 0 0 0 1 x x x x x 0 0 Wb ORI

T2 x 0 0 0 x x 0 1 1 2 add x 0 0 Ex LW
T3 1 1 0 0 x x 0 x x x x x 0 0 M LW
T4 x 0 0 0 0 1 1 x x x x x 0 0 Wb LW

T2 x 0 0 0 x x 0 1 1 2 add x 0 0 Ex SW
T3 1 0 1 0 x x 0 x x x x x 0 0 M SW

T2 x 0 0 0 x x 0 x x x sub 1 1 0 Ex BEQ

T2 x 0 0 0 x x 0 x x x x 2 0 1 Ex J

• Execution phases: IF, ID, Ex – Execute, M – Memory, Wb – Write back
• Instructions: R – R-type, LW – Load, SW – Store, BEQ – Branch , J – Jump , ORI – I-type
• ExtOp: 1/0 1 – arithmetic, 0 – logical operations

Table 1: The Values of the Control Signals in each Clock Cycle

2024

• 1-Bus Multi-Cycle Data-Path

1-BUS Multi-Cycle MIPS

Cluj-Napoca 26

Data-Path – Control Unit – Memory Interfacing

2024 Cluj-Napoca 27

1-BUS SRC Multi-Cycle MIPS

1-BUS SRC (simple RISC Computer)
Block Diagram [2]

ALU connected to the BUS through A and C registers
One bus connecting most registers allows many different RTs, but only one at a time
 replaces multiplexors

add $rd, $rs, $rt

IF: IR M[PC], PC PC + 4;
Add: RF[rd] RF[rs] + RF[rt];

Concrete RTL:

IF: T0 MA PC, C PC + 4;
T1 MD M[MA], PC C;
T2 IR MD;

Ex: T3 A RF[rs];
T4 C A + RF[rt];
T5 RF[rd] C

Abstract RTL:

• Special ALU operation for PC + 4 in T0
• add takes 3 concrete RTs (T3, T4, T5)

2024 Cluj-Napoca 28

2-BUS SRC Multi-Cycle MIPS

2-BUS SRC – Block Diagram [2]

Concrete RTL:

IF: T0 MA PC;
T1 PC PC + 4, MD M[MA];
T2 IR MD;

Ex: T3 A RF[rs];
T4 RF[rd] A + RF[rt];

add $rd, $rs, $rt

• Bus A carries data going into registers
• Bus B carries data coming from registers
• ALU function C = B (Pass B)

• is used for all simple register transfers

2024 Cluj-Napoca 29

3-BUS SRC Multi-Cycle MIPS

Concrete RTL:

IF: T0 MA PC, MD M[MA], PC PC + 4
T1 IR MD;

Ex: T2 RF[rd] RF[rs] + RF[rt];

add $rd, $rs, $rt

• A-bus is ALU operand 1
• B-bus is ALU operand 2
• C-bus is ALU output
• Note: MA input connected to the C and B-buses

• In step T0:
• PC moves to MA over bus B and
• goes through the ALU (INC 4 operation)
• to reach PC again by way of bus C

• PC must be edge-triggered
• MA must be a transparent latch – the address

is propagated to the memory unit in T0

3-BUS SRC – Block Diagram [2]

2024

Problems – Homework

Cluj-Napoca 30

• Implement other instructions for the Mux based multi-cycle MIPS
CPU and for the bus based MIPS CPUs (1, 2 or 3 busses)
– add, sub, and, or, lw, sw, beq, j, addi, andi, ori

– sll, srl, sra, sllv, srlv, srav

– slt, slti

– bne , bgez, bltz,…

– jr, jal

– ….

• Implement new instructions for the Mux based multi-cycle MIPS
CPU and for the bus based MIPS CPUs (1, 2 or 3 busses)
– LWR, SWR (sums two registers to obtain the memory address)

– LWA, SWA (uses a single register to obtain the memory address)

2024

1. D. A. Patterson, J. L. Hennessy, “Computer Organization and
Design: The Hardware/Software Interface”, 5th edition, ed.
Morgan–Kaufmann, 2013.

2. D. A. Patterson and J. L. Hennessy, “Computer Organization and
Design: A Quantitative Approach”, 5th edition, ed. Morgan-
Kaufmann, 2011.

3. MIPS32™ Architecture for Programmers, Volume I: “Introduction
to the MIPS32™ Architecture”.

4. MIPS32™ Architecture for Programmers Volume II: “The MIPS32™
Instruction Set”.

References

Cluj-Napoca 31

