
Computer Architecture

Lecturer: Mihai Negru

2nd Year, Computer Science

Technical University of Cluj-Napoca

Computer Science Department

Lecture 7: Multi-Cycle CPU Design (2)

Control Unit Design

http://users.utcluj.ro/~negrum/

http://users.utcluj.ro/~negrum/

2024

• Step-by-step Processor DesignMulti cycle MIPS
– Step 1: ISA Abstract RTL

– Step 2: Components of the Data-Path

– Step 3: RTL + Components Data-Path

– Step 4: Data-Path + Abstract RTL Concrete RTL

– Step 5: Concrete RTL Control

• Mux-based multi-cycle data-path designed in the previous lecture

Multi-Cycle Processor Design

Cluj-Napoca 2

2024

• Five Execution Phases
– Instruction Fetch

– Instruction Decode and Register Fetch

– Execution, Memory Address Computation, or Branch / Jump Completion

– Memory Access or Arithmetical – Logical instruction completion

– Write-back

• Instructions take from 3 to 5 clock cycles

• In one clock cycle all operations are done in parallel, not sequential!
– T0 IRM[PC] and PC PC+4 are done simultaneously

• Between Clock T1 and Clock T2 the control unit will select the next
step in accordance to the instruction type

Multi-Cycle CPU Design – Summary

Cluj-Napoca 3

2024

Multi-Cycle CPU Design – Control Signals

Cluj-Napoca 4

T IorD
Mem
Read

Mem
Write

IR
Write

Reg
Dst

Mem
toReg

Reg
Write

Ext
Op

ALU
SrcA

ALU
SrcB

ALU
Op

PC
Src

PC
WrCd

PC
Wr

T0 0 1 0 1 x x 0 x 0 1 add 0 0 1 IF
T1 x 0 0 0 x x 0 1 1 3 add x 0 0 ID

T2 x 0 0 0 x x 0 x 1 0 fun x 0 0 Ex R-T
T3 x 0 0 0 1 0 1 x x x x x 0 0 Wb R-T

T2 x 0 0 0 x x 0 0 1 2 or x 0 0 Ex ORI
T3 x 0 0 0 0 0 1 x x x x x 0 0 Wb ORI

T2 x 0 0 0 x x 0 1 1 2 add x 0 0 Ex LW
T3 1 1 0 0 x x 0 x x x x x 0 0 M LW
T4 x 0 0 0 0 1 1 x x x x x 0 0 Wb LW

T2 x 0 0 0 x x 0 1 1 2 add x 0 0 Ex SW
T3 1 0 1 0 x x 0 x x x x x 0 0 M SW

T2 x 0 0 0 x x 0 x x x sub 1 1 0 Ex BEQ

T2 x 0 0 0 x x 0 x x x x 2 0 1 Ex J

• Execution phases: IF, ID, Ex – Execute, M – Memory, Wb – Write back
• Instructions: R – R-type, LW – Load, SW – Store, BEQ – Branch , J – Jump , ORI – I-type
• ExtOp: 1/0  1 – arithmetic, 0 – logical operations

Table 1: The Values of the Control Signals in each Clock Cycle

2024

• Control Unit implementation
– Hardwired

– Micro-Programmed

• Hardwired vs. Micro-Programmed
– Hardwired units are faster

– Hardwired design is complex if large

– Bugs in hardwired design cannot be fixed in field

– Emulation is easy with micro-coding

Multi-Cycle CPU Design – Step 5

Cluj-Napoca 5

Hardwired Control Unit Micro-Programmed Control Unit

2024

• Control Unit implementation can be derived from specification
– Hardwired

– Micro-Programming

• Hardwired control unit
– We can specify the Control Unit as a finite state machine

– We’ll use a Moore machine (output based only on current state)

– Value of control signals is dependent upon:

• What instruction is being executed

• Which step is being performed

– Each entry in the Control Signals Values Table is a state in our FSM

Multi-Cycle CPU Design – Step 5

Cluj-Napoca 6

2024

• Finite State Machine for MIPS-lite Multi-Cycle CPU: FSM 1
– FSM1 is based on the Control Signals Values table (table 1)

Hardwired Control Unit – FSM

Cluj-Napoca 7

How many state bits?

2024

• Optimized FSM1 – unify Execution for LW and SW: FSM 2

Hardwired Control Unit – FSM

Cluj-Napoca 8

How many state bits?

2024

• Hardwire implementation for MIPS Multi-Cycle Control Unit

Hardwired Control Unit

Cluj-Napoca 9

• Control Unit
 State register to hold the state
 Control logic
 assigns the values for the control signals

in each state
 Current state + opcode field decode the

next state

• Possible implementations:
 Programmable Logic Array (PLA) to

implement the control logic
 One Flip-Flop per state to implement the

FSM
 Sequence/Jump Counter + Decoder to

implement the FSM
 …

[2]

2024

• PLA (programmable logic array) based control logic
– A net of AND gates; the outputs are connected by OR gates

– Every control signal is set by the current state

– Next state derived from current state and the opcode field

Hardwired Control Unit

Cluj-Napoca 10

• Example – PCWrite :
 See table 1, FSM1.
 States encoded on 4 bits
(numbering top  down, left  right)
 PCWrite must be set in Instruction Fetch

(state 0 = “0000”) and when executing a
jump (state 12 = “1100”)

2024

• State encoding Types
– Compact binary encoded FSM

• The state numbers depend on instruction decode and execution phases

•  Hard to extend or modify

– One flip-flop per state (One-Hot encoding)

Cluj-Napoca 11

Hardwired Control Unit – 1 FF/state

• Start: Synchronized, a single
clock period duration signal

• X: Condition Flag
• IF0, IF1: Instruction Fetch and

decode execution phases
• IjTi: Instruction execution phases
• The instruction decode and

execution phases are
independent

•  Easy to extend or modify
One Flip-Flop per State Control Unit

2024

Hardwired Control Unit – Sequence Counter

Cluj-Napoca 12

Sequence/Jump Counter Control Unit

Counter Operation
• Reset: Counter Reset
 selects the T0 column through the

Decoder
• Up: Count Up validation
 Implicitly asserted
 Load and Reset have priority

• Load: Counter Load for micro-jumps
inside the counter
 The micro-jump addresses are

selected by the currently active
control signals from the control
matrix

Reduction of states possible – depends on
implementation

• IF, ID: T0 and T1
• After IF, InsX & T2 determines the

start of a new instruction execution
• After completion  Reset  T0 and

IF for the new instruction

2024

• Sequence/Jump Counter Control Unit
– Example for R-type instructions

– Sequencing: T2 – implicit Up, T3 – Reset (jump to IF – T0)

Hardwired Control Unit – Sequence Counter

Cluj-Napoca 13

Hardwired Control Unit Decode Logic for R-type instruction

2024

• Sequencing logic example: R-type Instructions

Hardwired Control Unit – Sequence Counter

Cluj-Napoca 14

• T2 – implicit Up
• T3 – Reset (jump to IF – T0)

2024

• Example – extend for instructions that take a variable number of
clock cycles

• R-type: sll $rd, $rs, sa RTL Abstract: RF[rd] RF[rs] << sa

– Suppose ALU performs only 1-bit shifts

– We must extend the data-path in order to allow

• A mechanism of counting the clock cycles: dedicated counter SCnt with parallel
load (sa is loaded when SCWrite is asserted), count down enable (SCen), 1-bit
zero detector signal (ZeroC)

• A connection from ALUOut to one of the ALU inputs, in order to repeat the
shifting process (as long as it is necessary)

– The control unit will treat this R-type instruction separately (dedicated line
from Instruction Decoder, to the sequence counter)

Hardwired Control Unit – Sequence Counter

Cluj-Napoca 15

2024

Hardwired Control Unit – Sequence Counter

Cluj-Napoca 16

T0  IR M[PC], PC  PC + 4;
T1  A  RF[rs], B  RF[rt]; SCnt sa

SLL & T2 & ZeroC = 0  ALUOut A << 1; SCnt SCnt – 1
SLL & T2 & ZeroC = 1  ALUOut A;
SLL & T3 & ZeroC = 0  ALUOut  ALUOut << 1; SCnt  SCnt – 1; repeat (load T3)

SLL & T3 & ZeroC = 1  R[rd]  ALUOut; load T0

What are the values of the control signals in each state?

2024

Hardwired Control Unit – Sequence Counter

Cluj-Napoca 17

T2: Implicit Up
T3: (ZSC = 0)  ldT3; Repeat the same state

(ZSC = 1)  ldT0; Reset (go to IF – T0)

Shift Left Logical: SLL – sequencing

2024

• Disadvantages of Using Hardwire Control Units
– The complexity of the FSM depends on Data-Path complexity

– Real processors are complex: over 100 instructions with 1 to 20 cycles.

–  Use micro-programming

• Micro-Programmed Control Unit
– Appropriate if hundreds of opcodes, modes, cycles, etc.

– Control signals are specified symbolically using µinstructions

– Possible Sequencing Capabilities in a Micro-Programmed Control Unit

• Incrementing of the control address register

• Unconditional and conditional branches

• Mapping from the machine instruction’s operation code to the address of the
corresponding µinstruction sequence in control memory

• A facility for subroutine call and return

Multi-Cycle CPU Design – Step 5

Cluj-Napoca 18

2024

• Micro-Programmed Control Unit Block Diagram

Micro-Programmed Control Unit

Cluj-Napoca 19

• Microcode Memory = Control Memory
• The next state is computed using a

counter (at least in some states)
• The signals labeled AddrCtl control how

the next state is determined MUX
• Mapping of instructions to μoperations

• Simple – concatenation between
opcode and address

• Complex – ROM or PLA[2]

2024

• Variations on Micro-Programming
– “Horizontal” micro-code Example on next slides

• Each data-path control signal is represented by a bit in the µinstruction
• Horizontal µcode has wider µinstructions
• Multiple parallel operations per µinstruction
• Fewer steps per instruction
• Simple encodingmore bits

– “Vertical” micro-code
• Encode fields to save ROM space
• Vertical µcode has narrower µinstructions

– Typically a single data-path operation per µinstruction
– Separate µinstructions for branches

• More steps per instruction
• More compact less bits

– Nano-coding
• Two level microprogramming
• Tries to combine best of horizontal and vertical µ-code

Micro-Programmed Control Unit

Cluj-Napoca 20

2024

• Micro-Programming Pros and Cons
– Ease of design

– Flexibility

• Easy to adapt to changes in organization, timing, technology

• Can make changes late in design cycle, or even in the field

– Can implement very powerful instruction sets (just more control memory)

– Generality

• Can implement multiple instruction sets on same machine

• Can tailor instruction set to application requirements

– Compatibility

• Many organizations, same instruction set

– Slow (ROM is no longer faster than RAM)

Micro-Programmed Control Unit

Cluj-Napoca 21

2024

• Designing a μinstruction set
1. Start with list of control signals

2. Group signals together that make sense (vs. random): called fields

3. Places fields in some logical order (e.g., ALU operation & ALU operands first
and μinstruction sequencing last)

4. Create a symbolic legend for the μinstruction format, showing name of field
values and how they set the control signals

5. To minimize the width, encode in the same field operations that will not be
used at the same time (vertical micro-programming)

Micro-Programmed Control Unit

Cluj-Napoca 22

2024

• Micro-Programmed Control Unit Example for FSM1

Micro-Programmed Control Unit – V1

Cluj-Napoca 23

• μBranch control
• 00  μBranch address
• 01  External Source (not used in this example)
• 10  The first μinstruction address for the

mapped operation code
• 11  Next sequential μinstruction address

Data-Path Control Signals μBranch Address μBranch Control

μInstruction fields

• The data-path control signals are defined in table 1
• The μBranch address: 4 bits (13 states)
• The μBranch control: select signal for the multiplexer

– 2 bits

2024

Micro-Programmed Control Unit – V1

Cluj-Napoca 24

A
d

d
r.

Io
rD

M
e

m
R

e
a d

M
e

m
W

ri
te

IR
W

ri
te

R
e

gD
st

M
e

m
to

R
e

g
R

e
g

W
ri

te

Ex
tO

p

A
LU

Sr
cA

A
LU

Sr
cB

A
LU

O
p

P
C

Sr
c

P
C

W
rC

d

P
C

W
r

μ
B

ra
n

ch

A
d

d
re

ss

μ
B

ra
n

ch

C
o

n
tr

o
l

Ex
e

cu
ti

o
n

P
h

as
e

No. 1b 1b 1b 1b 1b 1b 1b 1b 1b 2b 2b 2b 1b 1b 4b 2b
00 0 1 0 1 x x 0 x 0 1 add 0 0 1 x 3 IF
01 x 0 0 0 x x 0 1 1 3 add x 0 0 x 2 ID
02 x 0 0 0 x x 0 x 1 0 fun x 0 0 x 3 Ex R-T
03 x 0 0 0 1 0 1 x x x x x 0 0 0000 0 Wb R-T
04 x 0 0 0 x x 0 0 1 2 or x 0 0 x 3 Ex ORI
05 x 0 0 0 0 0 1 x x x x x 0 0 0000 0 Wb ORI
06 x 0 0 0 x x 0 1 1 2 add x 0 0 x 3 Ex LW
07 1 1 0 0 x x 0 x x x x x 0 0 x 3 M LW
08 x 0 0 0 0 1 1 x x x x x 0 0 0000 0 Wb LW
09 x 0 0 0 x x 0 1 1 2 add x 0 0 x 3 Ex SW
10 1 0 1 0 x x 0 x x x x x 0 0 0000 0 M SW
11 X 0 0 0 x x 0 x x x sub 1 1 0 0000 0 Ex Br
12 x 0 0 0 x x 0 x x x x 2 0 1 0000 0 Ex J

• Horizontal micro instruction length: 23 bits
• The addresses correspond to the order in table 1
• For the selected instructions the μBranch field is used only for IF μAddress generation
• If we connect to the External Source the IF μAddress  shorter μInstruction length

The μCode Memory for the selected instructions

2024

• Micro-Programmed Control Unit Example for FSM1

Micro-Programmed Control Unit – V1

Cluj-Napoca 25

• μBranch control
• 00  μBranch address
• 01  External Source (not used in this example)
• 10  The first μinstruction address for the

mapped operation code
• 11  Next sequential μinstruction address

• Disadvantage: the select logic does not depend on
state bits => one cannot implement more complex
instructions (SLL from our previous example)

• Possible variation – different inputs to the
sequencing Multiplexer and conditional logic for the
select signal of the multiplexer

2024 Cluj-Napoca 26

Micro-Programmed Control Unit – V2

µ-Programmed Control Unit, V2

Differences from V1:
• µPC and µPC+1 inputs
• The μBranch address and μBranch control

replaced by Next address
• External – absolute address of IF from

μCode Memory
• Sequencing based on Jump Logic –

considering the data-path status signals and
Next address

µControl values
next  µPC+1
spin  if (busy) then µPC else µPC+1
fetch  absolute
dispatch  PLA = MAP(opcode) or a decoder
feqz  if (zero) then absolute else µPC+1

(fetch if equal zero)
fnez  if (zero) then µPC+1 else absolute

(fetch if not equal zero)

2024

• Micro-Programmed Control Unit Possible Types
– V1: The Sequencer’s MUX inputs: µPC+1, MAP (Opcode), External Source,

µBranch Address. Unconditional MUX Selection Logic from the µinstructions.

– V2: The Sequencer’s MUX inputs: MAP (opcode), External Source (absolute),
µPC+1, µPC. Conditional MUX Selection Logic: Condition selection code from
the µinstructions and external condition flag evaluation logic.

– V3: The Sequencer’s MUX inputs: µPC+1, MAP1 (opcode), MAP2 (Opcode),
Instruction Fetch µAddress. Unconditional MUX Selection Logic from the
µinstructions (Vertical Micro-Programming).

– V4: The Sequencer’s MUX inputs: µPC+1, MAP(Opcode), External Source,
µBranch Address. Conditional MUX Selection Logic: Condition selection code
from the µinstructions and external condition flag evaluation logic.

– ….

Cluj-Napoca 27

Micro-Programmed Control Unit

2024

• Definition: Event causes unexpected transfer of control
• Types:

– Exceptions[overflow]  generated inside the processor

– Interrupts [I/O]  associated with external events

– MIPS Exceptions: undefined instruction or arithmetic overflows

– Exception Detection – How to discover exception?

– Exception Handling – What to do?

• Exception Detection:
– Undefined Instruction

• Add an IllegalOp State to the FSM

• Every unknown instruction (undefined opcode)  transitions to the Exception
State

– Arithmetic Overflow

• ALU has overflow detection logic  create a new Overflow State to handle
overflow

Multi-Cycle CPU Design – Exceptions

Cluj-Napoca 28

2024

• Exception handling
– Two Techniques: EPC / Cause Registers and Vectored Interrupts

– Vectored Interrupts

• Each exception has a distinct address AE associated with it

• Exception detected  AE for that exception written to PC

– EPC / Cause: MIPS

• Exception Program Counter Register – EPC (32 bits): stores the address of the
offending instruction: EPC (PC + 4 – 4) = PC (use ALU for subtract 4)

• Cause Register – 32 bits: stores the cause of the exception:

– undefined instruction: Cause  0

– arithmetic overflows: Cause  1

• Exception detected

 Address of instruction saved in EPC

 Cause register stores an exception type code

• Exception handler acts on Cause, tries to restart execution at instruction pointed
to by EPC

Multi-Cycle CPU Design – Exceptions

Cluj-Napoca 29

2024

• FSM1 with Exceptions handling states

Multi-Cycle CPU Design – Exceptions

Cluj-Napoca 30

2024

• Modifications to MIPS Multi-Cycle Data-Path for Exceptions
– New Registers – EPC and Cause (32-bit)

– New Control Signals – EpcWrite, CauseWrite

– New Control Line: IntCause

• 0 for undefined instruction

• 1 for overflow

– New Mux input for PCsource Signal (3)

• PC inputs

– PC + 4

– Branch Target Address

– Jump Address

– Additional input: AE = 8000 018016 in MIPS

• Recall: ALU overflow detection already “installed”

Multi-Cycle CPU Design – Exceptions

Cluj-Napoca 31

2024

Multi-Cycle CPU Design – Exceptions

Cluj-Napoca 32

[1]

2024

Problems – Homework

Cluj-Napoca 33

• 1-Bus, 2-Bus and 3-Bus based MIPS implementation of the
instructions
– add, sub, and, or, lw, sw, beq, j, addi, andi, ori

– sll, srl, sra, sllv, srlv, srav

– slt, slti

– bne , bgez, bltz,…

– jr, jal

– ….

• Design the control unit in order to reflect the new instructions
– Hardwired control unit

– Micro-programmed control unit

2024

1. D. A. Patterson, J. L. Hennessy, “Computer Organization and
Design: The Hardware/Software Interface”, 3rd edition, ed.
Morgan–Kaufmann, 2005.

2. Vincent P. Heuring, Harry F. Jordan, “Computer Systems Design
and Architecture”, 2nd Edition

3. CODE3e – Appendix D: Mapping Control to Hardware

4. Microprogramming – Arvind Computer Science & Artificial
Intelligence Lab M.I.T., Based on the material prepared by Arvind
and Krste Asanovic, September 21, 2005

5. MIPS32™ Architecture for Programmers, Volume I: “Introduction
to the MIPS32™ Architecture”.

6. MIPS32™ Architecture for Programmers Volume II: “The MIPS32™
Instruction Set”.

References

Cluj-Napoca 34

