Technical University of Cluj-Napoca 95535
Computer Science Department 255

Computer Architecture

Lecturer: Mihai Negru
2"d Year, Computer Science

Lecture 7: Multi-Cycle CPU Design (2)
Control Unit Design

http://users.utcluj.ro/~negrum/

http://users.utcluj.ro/~negrum/

“Ii Multi-Cycle Processor Design

* Step-by-step Processor Design = Multi cycle MIPS

Step 1: ISA - Abstract RTL

Step 2: Components of the Data-Path

Step 3: RTL + Components = Data-Path

Step 4: Data-Path + Abstract RTL = Concrete RTL
Step 5: Concrete RTL = Control

Mux-based multi-cycle data-path designed in the previous lecture

2024

Cluj-Napoca

$33%
“Ii Multi-Cycle CPU Design — Summary ggésc

* Five Execution Phases
— Instruction Fetch
— Instruction Decode and Register Fetch
— Execution, Memory Address Computation, or Branch / Jump Completion
— Memory Access or Arithmetical — Logical instruction completion
— Write-back

* Instructions take from 3 to 5 clock cycles

* In one clock cycle all operations are done in parallel, not sequential!
— T0 =2 IR € M[PC] and PC €& PC+4 are done simultaneously

 Between Clock T1 and Clock T2 the control unit will select the next
step in accordance to the instruction type

2024 Cluj-Napoca 3

C
®) ® s‘ii
‘II, Multi-Cycle CPU Design — Control Signals iy
T l1orD Mem | Mem IR Reg | Mem | Reg | Ext | ALU [ALU | ALU | PC PC PC
Read | Write | Write | Dst | toReg | Write | Op | SrcA | SrcB| Op | Src | WrCd | Wr
T0 0 1 0 1 X X 0 X 0 1 add 0 0 1 [IF
T1 X 0 0 0 X X 0 1 1 3 add X 0 0 |ID
T2 X 0 0 0 X X 0 X 1 0 fun X 0 0 |ExR-T
T3 X 0 0 0 1 0 1 X X X X X 0 0 [WbR-T
T2 X 0 0 0 X X 0 0 1 2 or X 0 0 | ExORI
T3 X 0 0 0 0 0 1 X X X X X 0 0 |(WbORI
T2 X 0 0 0 X X 0 1 1 2 add X 0 0 |ExLW
T3 1 1 0 0 X X 0 X X X X X 0 0O MWW
T4 X 0 0 0 0 1 1 X X X X X 0 0 |WbLW
T2 X 0 0 0 X X 0 1 1 2 add X 0 0 |ExSW
T3 1 0 1 0 X X 0 X X X X X 0 0 | MSW
T2 X 0 0 0 X X 0 X X X sub 1 1 0 | ExBEQ
T2 X 0 0 0 X X 0 X X X X 2 0 1 |Ex)J

Table 1: The Values of the Control Signals in each Clock Cycle

e Execution phases: IF, ID, Ex — Execute, M — Memory, Wb — Write back
* Instructions: R — R-type, LW — Load, SW — Store, BEQ — Branch, J —Jump , ORI — I-type
e ExtOp:1/0 = 1 - arithmetic, 0 — logical operations

2024

Cluj-Napoca

“Ii Multi-Cycle CPU Design — Step 5 §§§3

e Control Unit implementation
— Hardwired
— Micro-Programmed

 Hardwired vs. Micro-Programmed
— Hardwired units are faster

— Hardwired design is complex if large
— Bugs in hardwired design cannot be fixed in field

— Emulation is easy with micro-coding Control [Fon Execution Unit

it

Control FSM Execution Unit uProg control|
|_||'|i|_ Mem

control ||
I

UProg
clk S

::j,‘.l;‘) unler
. S

Address
selector I state information
I

Fslate

[
clk |

state information IR

Hardwired Control Unit Micro-Programmed Control Unit

2024 Cluj-Napoca 5

“Ii Multi-Cycle CPU Design — Step 5

e Control Unit implementation can be derived from specification

— Hardwired
— Micro-Programming

 Hardwired control unit
— We can specify the Control Unit as a finite state machine
— We'll use a Moore machine (output based only on current state)

— Value of control signals is dependent upon:
* What instruction is being executed

e Which step is being performed
— Each entry in the Control Signals Values Table is a state in our FSM

2024 Cluj-Napoca

[[£‘$5
‘II' Hardwired Control Unit — FSM 255+
* Finite State Machine for MIPS-lite Multi-Cycle CPU: FSM 1
— FSM1 is based on the Control Signals Values table (table 1)
How many state bits? CJ nstruction
- Fetch /
T RrRéempg
VW PCEPC+4
ﬁ Instructlorﬁ
\ Decode /
T A€ RF[rs]
B € RF[rt]
~ ~ ALUOut (:PC +S_Ext(imm) << 2 A
iopcode = iopcode = iopcode = iopcode = iopcode = lopcode =
R-type ORI LW SW BEQ IMP
e won o ew o ssw L Cavmea i
‘\\Execu::/il:;?\// <Executlon) \Executlon/ (Execution) Execuiiocn / Executlo?‘a/
[ALuout € ALUOut € A ALUOUt €A+ [ALUOW €A+ | if(A==B) pc e
LA opB L| Z_ext{imm) S_Ext(imm) S_Ext(imm) PC €& ALUOut PC[31:28]| |IR[25:0]
v N AR I Ay v <<2
7 3Rtype N/ s:0R N 1055w g
\erte Back/ I\ erte Back S/ ‘\\Memory//’ Memory /
T RFIrd] € TRA € \ii_l_fl/DRé T M[ALUOut] € >
ALUOut ALUOut M[ALUOuUL] RF[rt]
/ 8 LW \
\erte Back/
IRF[rt] &MDR
Y \ 4

2024 Cluj-Napoca

Hardwired Control Unit — FSM

* Optimized FSM1 — unify Execution for LW and SW: FSM 2
(Inst ruc;c_{ahl
. _ Fetch
How many state bits? R € MIPC]
PC&PC+4
/nstrucnon\
\ Decode /
— A € RF[rs]
B € RF[rt]
~ ALUQut €PC + S_Ext(imm) << 2 A
ancode = R-type iopcode = ORI Lopcode = LW or SW iopcode =BEQ lopcode = JMP
' /ﬁztyr;:\\ ORI / Address N " Branch ™\ / T mip‘l\\
\Ex;ei:u:clgrl/ \E\)_(;ticu:cigr] wmputatlop/ é"-;g(‘l’;:)p‘ + KExecutlon/ \Execution/
ALUQut < Aop ALUOut € A| Opcode = LW| Opcode = SW If (A == B) PC € PC[31:28] | |
B Z_ext(imm) i ' i PC € ALUOUL IR[25:0] << 2
/F;-tyr;e;\\ a " ORI 1\ e /Lw“‘\ - Tosw
\Wnte Back/ \Wrgte Back / \ Memory / \Memory/
“RF[rd] € B RF[rt} "MDR & M[ALUOut] €
ALUOut ALUOuUt B IVI[ALUOut] RF[rt]
g w ™
\erte Bacly
IRF[rt] & MDR
Y \ 4 Y
2024 Cluj-Napoca 8

3335
° ° ‘5
‘II' Hardwired Control Unit iy
 Hardwire implementation for MIPS Multi-Cycle Control Unit
— PCWirite)
ronecoms. . ® Control Unit
o = State register to hold the state
Mermrite = Control |OgiC
Control logic % = assigns the values for the control signals
PCSource in each state
outouts | = Current state + opcode field decode the
utputs | FalLUSrcE
T next state
Reqiirite
RegDst
NS3 e Possible implementations:
MNE2 .
NS = Programmable Logic Array (PLA) to
Inputs NS0 . :
) - . implement the control logic
ol sl ottt 4+ 1 % 7 * One Flip-Flop per state to implement the
sl & & & & &8 2| 8| =] 3 ESM
" Cpeodo il et = Sequence/Jump Counter + Decoder to
implement the FSM
[2]
2024 Cluj-Napoca 9

b

Hardwired Control Unit

 PLA (programmable logic array) based control logic
— A net of AND gates; the outputs are connected by OR gates

S3
S2
S1
SO

S3
S2
S1
SO

— Every control signal is set by the current state

— Next state derived from current state and the opcode field

* Example — PCWrite :
= See table 1, FSM1.
= States encoded on 4 bits
(numbering top = down, left 2 right)
= PCWrite must be set in Instruction Fetch
(state 0 = “0000”) and when executing a
jump (state 12 = “1100”)

PCWrite

2024

Cluj-Napoca 10

333
“Ii Hardwired Control Unit — 1 FF/state $53

* State encoding Types

— Compact binary encoded FSM
* The state numbers depend on instruction decode and execution phases
* - Hard to extend or modify

— One flip-flop per state (One-Hot encoding)

e Start: Synchronized, a single

Start

R F1 e IFo [«—CG@F— clock period duration signal
¢ e X: Condition Flag
Ins 1 ’D’ 1170 [—m NT1 1 NT2 7—w T3 7™ « |FQ, IF1: Instruction Fetch and
D decode execution phases
Ins2 *} 270 D—: * |jTi: Instruction execution phases
* The instruction decode and
Ins3 DT clk execution phases are
A '*D‘O_Dj independent

* - Easy to extend or modify
One Flip-Flop per State Control Unit

2024 Cluj-Napoca 11

g
“Ii Hardwired Control Unit — Sequence Counter %z=

Jump Address ‘mq * |F, ID: TOand T1
¢ $ ¢ ¢ * After IF, InsX & T2 determines the
D3 D2 DI DO |€— Reset start of a new instruction execution
Counter T » « After completion > Reset > TO and

Q3

Q2

i

11

IF for the new instruction

Counter Operation
* Reset: Counter Reset

4:16 Decoder

= selects the TO column through the

IR TO T1 T2 T3 T4 T5 T15 Decoder
l ‘ ‘ e Up: Count Up validation
e IF/ID = |mplicitly asserted .
Decoder = Load and Reset have priority
et * Load: Counter Load for micro-jumps
ns inside the counter
inss = The micro-jump addresses are
selected by the currently active
+ f control signals from the control
Data-Path Control Signals Flags m atrlx
Sequence/Jump Counter Control Unit Reduction of states possible — depends on
implementation
2024 Cluj-Napoca 12

i“i Hardwired Control Unit — Sequence Counter £2

* Sequence/Jump Counter Control Unit
— Example for R-type instructions
— Sequencing: T2 — implicit Up, T3 — Reset (jump to IF —TO)
T2 T3

YTTYbTTT

Read Write Write Dst toReg Write Op SrcA SrcB Op Src WrCd Wr

Hardwired Control Unit Decode Logic for R-type instruction

2024 Cluj-Napoca 13

3
i“i Hardwired Control Unit — Sequence Counter 23:<

* Sequencing logic example: R-type Instructions

Jump Address

* T2-implicit Up
* T3 —Reset (jump to IF-TO)

Sle—o
Sle—o
—
«

D1 DO
Counter RefJe;: —Cﬁ'{ %_

Load ®

T2 T3

H O [

-’_I
. g

R-type

2024 Cluj-Napoca 14

|
“Ii Hardwired Control Unit — Sequence Counter %z=

 Example — extend for instructions that take a variable number of
clock cycles

e R-type:sll Srd, Srs, sa RTL Abstract: RF[rd] € RF[rs] << sa

— Suppose ALU performs only 1-bit shifts

— We must extend the data-path in order to allow

* A mechanism of counting the clock cycles: dedicated counter SCnt with parallel
load (sa is loaded when SCWrite is asserted), count down enable (SCen), 1-bit
zero detector signal (ZeroC)

e A connection from ALUOut to one of the ALU inputs, in order to repeat the
shifting process (as long as it is necessary)

— The control unit will treat this R-type instruction separately (dedicated line
from Instruction Decoder, to the sequence counter)

2024 Cluj-Napoca 15

g3
° ° 3’%2‘5
Hardwired Control Unit — Sequence Counter 23:<
lorD MemRead MemWrite IRWrite RegDst RegWrite ALUSICcA
L PC - Instruction Reé}dl : L6M
Address [25-21] regisier 1 Read || A 1
— Instruction Read data 1 _-D g :
Memory [20-16) t : s B 2 Zero
MemData Instruction |_ M . Registers ALY A ALUOuUt H
. [15-0] | |Instruction u ‘r/;/gr;litseter Read @ = resuy
i ‘c/i\gtge Instruction | §—1 {4 dataz 4= 1M / SR SR
register) Write 5 u | |
Instruction ™ daa 3 "
[15-0] . s A~ TP o
Memory 1T\ 16 ALU || "
L+ data ~ Sign control
register extend | ZeroC
Instruction [5-0] Instruction[10-6]
MemtoReg ALUSrcB ALUOp
TO = | IR € M[PC], PC €« PC + 4;
T1 > | A € RF[rs], B € RF[rt]; SCnt €< sa
SLL & T2 & ZeroC =0 =2 | ALUOut € A<<1;SCnt € SCnt—1
SLL& T2 & ZeroC =1 =2 | ALUOut € A;
SLL & T3 & ZeroC =0 =2 | ALUOuUt € ALUOut << 1; SCnt € SCnt — 1; repeat (load T3)
SLL& T3 & ZeroC =1 - | R[rd] € ALUOuUt; load TO
What are the values of the control signals in each state?
2024 Cluj-Napoca 16

g
i“i Hardwired Control Unit — Sequence Counter %z=

Jump Address

U

0
D3

Py

I

Q3

D2 D1

Counter

Q2 Ql

DO

Reset ———1<_|_
op (|

Load j—@

Qo

Vo

T2

[

ZeroC

1

T3

TH
iy

SLL

Shift Left Logical: SLL — sequencing

T2: Implicit Up
T3: (ZSC =0) = IdT3; Repeat the same state
(ZSC =1) - IdTO; Reset (go to IF —TO0)

2024

Cluj-Napoca

g3
“Ii Multi-Cycle CPU Design — Step 5 ggéu

Disadvantages of Using Hardwire Control Units
— The complexity of the FSM depends on Data-Path complexity
— Real processors are complex: over 100 instructions with 1 to 20 cycles.

— -2 Use micro-programming

Micro-Programmed Control Unit
— Appropriate if hundreds of opcodes, modes, cycles, etc.
— Control signals are specified symbolically using pinstructions
— Possible Sequencing Capabilities in a Micro-Programmed Control Unit
* Incrementing of the control address register

* Unconditional and conditional branches

* Mapping from the machine instruction’s operation code to the address of the
corresponding pinstruction sequence in control memory

* A facility for subroutine call and return

2024

Cluj-Napoca 18

. . 3333
“li Micro-Programmed Control Unit géiiﬁ

* Micro-Programmed Control Unit Block Diagram

Contral unit PCWrite
" [PCWriteCond
larD
Microcode memary ﬂemﬁfid Datapath
2Mmyirile
IR\ rite
E\vrite
Cutputs - Memtaﬂeg
FCSource
AL
ALUSrcB
CALUSIcA
Reg\Write
. LFeglst
Input AddrCil
1 .
J' I * * Microcode Memory = Control Memory
N/ Microprogram counter * The next state is computed using a
\E”i/ T counter (at least in some states)
| Address select logic | * The signals labeled AddrCtl control how
=4 the next state is determined 2> MUX
3 * Mapping of instructions to poperations
* Simple — concatenation between
Instruction register OpCOde and address
[2] opeade field ¢ Complex — ROM or PLA

2024 Cluj-Napoca 19

° ° ££‘51
‘ , Micro-Programmed Control Unit 235+

* Variations on Micro-Programming

— “Horizontal” micro-code = Example on next slides
* Each data-path control signal is represented by a bit in the pinstruction
* Horizontal pcode has wider pinstructions
* Multiple parallel operations per pinstruction
* Fewer steps per instruction
* Simple encoding = more bits
— “Vertical” micro-code
* Encode fields to save ROM space
e Vertical pcode has narrower pinstructions
— Typically a single data-path operation per pinstruction
— Separate pinstructions for branches
* More steps per instruction
* More compact =2 less bits
— Nano-coding
* Two level microprogramming
* Tries to combine best of horizontal and vertical p-code

2024 Cluj-Napoca 20

: . 3%
“Ii Micro-Programmed Control Unit 23

;5

g3s
g%°

Micro-Programming Pros and Cons

Ease of design
Flexibility
* Easy to adapt to changes in organization, timing, technology
e Can make changes late in design cycle, or even in the field
Can implement very powerful instruction sets (just more control memory)
Generality
e Can implement multiple instruction sets on same machine
e Can tailor instruction set to application requirements
Compatibility
* Many organizations, same instruction set
Slow (ROM is no longer faster than RAM)

2024

Cluj-Napoca

21

: : 3335
“Ii Micro-Programmed Control Unit 535

Designing a pinstruction set

1.
2.
3.

Start with list of control signals
Group signals together that make sense (vs. random): called fields

Places fields in some logical order (e.g., ALU operation & ALU operands first
and pinstruction sequencing last)

Create a symbolic legend for the puinstruction format, showing name of field
values and how they set the control signals

To minimize the width, encode in the same field operations that will not be
used at the same time (vertical micro-programming)

2024

Cluj-Napoca 22

“Ii Micro-Programmed Control Unit - V1 9355

* Micro-Programmed Control Unit Example for FSM1

IR | opcode [

————— uinstruction fields

Data-Path Control Signals | uBranch Address | uBranch Control

* The data-path control signals are defined in table 1

External Source

* The uBranch address: 4 bits (13 states)

* The pBranch control: select signal for the multiplexer

PLA
(computes
start addr)
ni ln"
nt l +
3 2 1 0 <&
HBranch
+1 " Control

e

; — 2 bits

* uBranch control
* 00 2 pBranch address

nJ

pCode
Memory

* 01 - External Source (not used in this example)

* 10 = The first pinstruction address for the
mapped operation code

* 11 - Next sequential pinstruction address

A AAAAAAAAAALA

|

Data-Path Control Signals

uBranch
Address

2024

Cluj-Napoca 23

° ° z%g::

Micro-Programmed Control Unit — V1 235
Q875 | ElsuBe S|S|2|8|g|3|5|58/8¢8| 58
22| 3555 12%°5E|5|3|2|8|5|5 55|58 58
< 5 & | o + W 32| |=|3|*|s3|& S § a

S - < < -8 = <| =2 X

No.{1b | 1b (1b | 1b | 1b | 1b | 1b [1b | 1b [2b | 2b | 2b | 1b | 1b 4b 2b
00 0 1 0 1 X X 0 X 0 1 |add| O 0 1 X 3 IF
01 X 0 0 0 X X 0 1 1 3 |add | x 0 0 X 2 ID
02 X 0 0 0 X X 0 X 1 0 fun X 0 0 X 3 ExR-T
03 X 0 0 0 1 0 1 X X X X X 0 0 | 0000 0 Wb R-T
04 X 0 0 0 X X 0 0 1 2 or X 0 0 X 3 Ex ORI
05 X 0 0 0 0 0 1 X X X X X 0 0 | 0000 0 Wb ORI
06 X 0 0 0 X X 0 1 1 2 |add| x 0 0 X 3 Ex LW
07 1 1 0 0 X X 0 X X X X X 0 0 X 3 M LW
08 X 0 0 0 0 1 1 X X X X X 0 0 | 0000 0 Wb LW
09 X 0 0 0 X X 0 1 1 2 |add| x 0 0 X 3 Ex SW
10 1 0 1 0 X X 0 X X X X X 0 0 0000 0 M SW
11 X 0 0 0 X X 0 X X X sub 1 1 0 0000 0 Ex Br
12 X 0 0 0 X X 0 X X X X 2 0 1 0000 0 Ex)J

The uCode Memory for the selected instructions

Horizontal micro instruction length: 23 bits
The addresses correspond to the order in table 1

For the selected instructions the puBranch field is used only for IF pAddress generation
If we connect to the External Source the IF pAddress = shorter plnstruction length

2024

Cluj-Napoca

24

'Y’
“li Micro-Programmed Control Unit - V1 iy

* Micro-Programmed Control Unit Example for FSM1
R[opcode [~—

e uBranch control
- * 00 = puBranch address
(computes * 01 - External Source (not used in this example)
start addr) * 10 - The first pinstruction address for the
Ertermal Source mapped operation code

’ l i l + * 11 - Next sequential pinstruction address
3 2 1 o <

=]
A

MBranch 2
+1 " Control
A » Disadvantage: the select logic does not depend on
T HPC state bits => one cannot implement more complex
i _instructions (SLL from our previous example)
nl

uCode * Possible variation — different inputs to the
Memory sequencing Multiplexer and conditional logic for the

select signal of the multiplexer
A [— g p

Data-Path Control Signals

UBranch
Address

2024 Cluj-Napoca 25

“li Micro-Programmed Control Unit — V2 iy

IR | opcode

v

PLA
(computes
start addr)

il

3 2 1 o _<&—

puBranch

Control
+1 n

1 “g

2!

External Source (Absolute)
i

jump
logic

Z

I

B

pCode
Memory

VYYVYYYYYVYYYY

Data-Path Control Signals

U-Programmed Control Unit, V2

Next address

ero

usy

Differences from V1.:

e uPCand uPC+1 inputs

 The pBranch address and pBranch control
replaced by Next address

e External —absolute address of IF from

nCode Memory

Sequencing based on Jump Logic —

considering the data-path status signals and

Next address

pControl values

next - UPC+1

spin - if (busy) then pPC else uPC+1
fetch —> absolute

dispatch - PLA = MAP(opcode) or a decoder

feqz - if (zero) then absolute else pPC+1
(fetch if equal zero)
fnez - if (zero) then pPC+1 else absolute

(fetch if not equal zero)

2024

Cluj-Napoca 26

: . $3%%
‘ ' Micro-Programmed Control Unit 235

Micro-Programmed Control Unit Possible Types

V1: The Sequencer’s MUX inputs: uPC+1, MAP (Opcode), External Source,
uBranch Address. Unconditional MUX Selection Logic from the pinstructions.

V2: The Sequencer’s MUX inputs: MAP (opcode), External Source (absolute),
UPC+1, uPC. Conditional MUX Selection Logic: Condition selection code from
the pinstructions and external condition flag evaluation logic.

V3: The Sequencer’s MUX inputs: uPC+1, MAP1 (opcode), MAP2 (Opcode),
Instruction Fetch pAddress. Unconditional MUX Selection Logic from the
linstructions (Vertical Micro-Programming).

V4: The Sequencer’s MUX inputs: uPC+1, MAP(Opcode), External Source,
uBranch Address. Conditional MUX Selection Logic: Condition selection code
from the puinstructions and external condition flag evaluation logic.

2024

Cluj-Napoca 27

g 332
“Ii Multi-Cycle CPU Design — Exceptions 33e=

* Definition: Event causes unexpected transfer of control

* Types:
— Exceptions[overflow] - generated inside the processor
— Interrupts [I/O] — associated with external events

— MIPS Exceptions: undefined instruction or arithmetic overflows
— Exception Detection — How to discover exception?
— Exception Handling — What to do?

* Exception Detection:

— Undefined Instruction
* Add an lllegalOp State to the FSM

* Every unknown instruction (undefined opcode) = transitions to the Exception
State

— Arithmetic Overflow

* ALU has overflow detection logic = create a new Overflow State to handle
overflow

2024 Cluj-Napoca 28

b

$33::

Multi-Cycle CPU Design — Exceptions 33e=

Exception handling
— Two Techniques: EPC / Cause Registers and Vectored Interrupts

— Vectored Interrupts

Each exception has a distinct address A; associated with it
Exception detected = A; for that exception written to PC

— EPC / Cause: MIPS

Exception Program Counter Register — EPC (32 bits): stores the address of the
offending instruction: EPC < (PC + 4 — 4) = PC (use ALU for subtract 4)

Cause Register — 32 bits: stores the cause of the exception:
— undefined instruction: Cause < 0
— arithmetic overflows: Cause € 1
Exception detected
—> Address of instruction saved in EPC
— Cause register stores an exception type code

Exception handler acts on Cause, tries to restart execution at instruction pointed
to by EPC

2024

Cluj-Napoca 29

g 3352
° ° [&
Multi-Cycle CPU Design — Exceptions iy
 FSM1 with Exceptions handling states
' i
mﬁiufuBh JU R
‘ N
k_Fetch_ /IllegaIOp
L IR € M[PC] N //
g q I PC € PC+4 A EPCEPC-4
-\Over ow /,/r *-f_\,\ Cause €0
" EPCE&PC-4 /" Instruction ™ opcode = other PC < 0x8000 0180
_f Cause € 1 \ Decode/
Overflow PC < 0x8000 0180 A & RF[rs]
B < RF[rt]
. X ALUOut GfC +S_Ext(imm) << 2 i
opcode = opcode = opcode = opcode = opcode = opcode =
R-type ORI LW SW BEQ IMP
A TRtype N ORL N w ™ sw ./ Branch / Jump
\._Execution Qxecutioy Qxecution/ I\E\xecutioy \._Execution / \Executicy
| ALuout €Aop | Aluout€a| | AlUOut €A+ | awout€ar | Fa==p) | pc € peizii2g ||
B Z ext(imm) S Ext{imm) S _Ext(imm) PC €& ALUQut IR[25:0] << 2
~Rtype N ORI N /LW‘\\) Tsw >
\\Vyrite Bacy \Vilrite BaEIQ \Memory’ Memory/
" | rerrd) < [rer €« " | mpr € [miaLuout) >
ALUOuUt ALUOut ¥ MIALUOU] RF[rt]
oW
\Write Bac_k/
_1F;F[rt] <MDR
Y h 4 \ 4
2024 Cluj-Napoca 30

“Ii Multi-Cycle CPU Design — Exceptions

Modifications to MIPS Multi-Cycle Data-Path for Exceptions

New Registers — EPC and Cause (32-bit)
New Control Signals — EpcWrite, CauseWrite
New Control Line: IntCause
e O for undefined instruction
* 1 for overflow
New Mux input for PCsource Signal (3)
* PCinputs
— PC+4
— Branch Target Address

— Jump Address
— Additional input: A; =8000 0180, in MIPS

Recall: ALU overflow detection already “installed”

2024

Cluj-Napoca

31

JLL

MemtoReg \ [SO—pO]

RegWrite

PC

“xc=°

a

Address

Memory

MemData

Write
data

(] ° -
Multi-Cycle CPU Design — Exceptions
CauseWrite
Il—ﬁ PCWriteCond /\\ IntCause
e i EPCWrite
PCWrit
4< | |:r; /Outpurs \ PCSource
MemRead | Control } ﬁtﬂgr};B
MemWrite } T on

IRWrite RegDst 0
AN Jump
: Shift address 1 ':_I.I
Instruction [25-0] 26 28 [31-0] X[
left 2 2
Instruction v
- 8000 01803
[31-26] p PC [31-28] &,
Instruction Read ey CI)UI
[25-21] register 1. o 4 L u —
Instruction - Read data 1 QXJ Zerall
[20-16] [/A register 2
. 0 : ALU Al U
Instruction M _ Registers ALUOUt 9 | epe
[15-0] | [Instruction| u | Write Read resuy
_ [15-11] X register data 2 _.l.— 0 |
Instruction 1 _ 41
register Write u
—{0 data 2 x
Instruction “L"‘ 3 0—l»
[15-0] X
- Cause
s /-
Memory . . 1
data 16 Sign 32 — ALU =
register extend '\Cm?’
Instruction [5-0]

[1]

2024

Cluj-Napoca

32

$33%
“Ii Problems — Homework ggéi«

e 1-Bus, 2-Bus and 3-Bus based MIPS implementation of the
instructions
— add, sub, and, or, lw, sw, beq, j, addi, andi, ori
— sll, srl, sra, sllv, srlv, srav
— slt, slti
— bne, bgez, bltz,...
— jr, jal

* Design the control unit in order to reflect the new instructions

— Hardwired control unit
— Micro-programmed control unit

2024 Cluj-Napoca 33

3332
“Ii References 535

1.

D. A. Patterson, J. L. Hennessy, “Computer Organization and
Design: The Hardware/Software Interface”, 37 edition, ed.
Morgan—Kaufmann, 2005.

Vincent P. Heuring, Harry F. Jordan, “Computer Systems Design
and Architecture”, 2" Edition

CODE3e — Appendix D: Mapping Control to Hardware

Microprogramming — Arvind Computer Science & Artificial
Intelligence Lab M.IL.T., Based on the material prepared by Arvind
and Krste Asanovic, September 21, 2005

MIPS32™ Architecture for Programmers, Volume |: “Introduction
to the MIPS32™ Architecture”.

MIPS32™ Architecture for Programmers Volume II: “The MIPS32™
Instruction Set”.

2024

Cluj-Napoca 34

