
Computer Architecture

Lecturer: Mihai Negru

2nd Year, Computer Science

Technical University of Cluj-Napoca

Computer Science Department

Lecture 9: Advanced Pipelining

http://users.utcluj.ro/~negrum/

http://users.utcluj.ro/~negrum/

2024

• Data hazards: depend on the order of read and write accesses to
the registers from the Register File.

• Consider two instructions i and j, with i occurring before j.

• Possible data Hazards:

– RAW – read after write

• i: R2 R1 + R3

• j: R4 R2 + R3

• j tries to read R2 before i writes it, so j incorrectly gets the old value for R2 .

• The most common type of hazard forwarding to overcome it

Data Hazard Classification

Cluj-Napoca 2

2024

• Data hazards:
– WAW – write after write

• i: R2 R4 x R7

• j: R2 R1 + R3

• j tries to write R2 before it is written by i.

• Writes in wrong order, leaving the value written by i rather than the value
written by j in the destination register.

• This hazard is present only in pipelines that write in more than one pipe stage
(or allow an instruction to proceed even when a previous instruction is stalled).

• Can’t happen in MIPS 5 stage pipeline because:

– All instructions take 5 stages, and

– Writes are always in stage 5 (WB)

Data Hazard Classification

Cluj-Napoca 3

2024

• Data hazards:
– WAR – write after read

• i: R1R2 + R3

• j: R3 R4 + R5

• j tries to write a destination before it is read by i, so i incorrectly gets the new
value – instruction i is stuck

• Can’t happen in MIPS 5 stage pipeline because:

– All instructions take 5 stages

– Reads are always in stage 2 (ID) and

– Writes are always in stage 5 (WB)

• This hazard occurs when there are some instructions that write results early in
the instruction pipeline, and other instructions that read a source late in the
pipeline.

– RAR – read after read is not a hazard!

Data Hazard Classification

Cluj-Napoca 4

2024

• Pipeline MIPS with variable length multi-cycle operations
– Extended MIPS pipeline to handle Floating Point (FP) operations

– The FP operations can have different latencies for variable length operations

– Latency – number of clock cycles necessary to execute the operation

Advanced Pipelining

Cluj-Napoca 5

MIPS Pipeline with 4 Functional Units: 1 – INT, 3 – FP

2024

• EX Integer unit handles loads and stores, integer ALU operations,
and branches;

• EX FP/Integer multiply, FP adder, FP/Integer divider.

• Only one instruction could be issued in a clock cycle,

• All instructions go through the standard pipeline stages:
– IF, ID, EX, MEM, WB.

• The FP operations are executed in several clock cycles in EX.

• After EX stageMEM and WB to complete execution.

• If the FP units are not pipelined
– No new instruction may issue until the previous one leaves the EX stage.

• If an instruction cannot proceed to the EX stage, the entire pipeline
behind that instruction will be stalled.

Advanced Pipelining

Cluj-Napoca 6

2024

Advanced Pipelining

Cluj-Napoca 7

Pipeline in pipeline: A pipeline that supports multiple outstanding FP operations

• Latency: the number of intervening cycles between an instruction that produces a result
and an instruction that uses the result.

• Initiation or repeat interval: the number of cycles that must elapse between issuing two
operations of a given type

The latency of the FP operations increases the frequency of RAW hazards and stalls!

2024

• The FP multiplier and adder are fully pipelined: 7 and 4 stages, respectively.

• The FP divider is not pipelined; it requires 24 clock cycles to complete.

• The latency in instructions between the issue of a FP operation and the use of the result
of that operation without incurring a RAW stall is determined by the number of cycles
spent in the execution stages.

• Example: the fourth instruction after a FP add can use the result of the FP add.

• For integer ALU operations, the depth of the execution pipeline is always one and the
next instruction can use the results.

• Both FP loads and Integer loads complete during MEM, which means that the memory
system must provide either 32 or 64 bits in a single clock cycle.

Advanced Pipelining

Cluj-Napoca 8

Functional unit Latency Initiation interval
Integer ALU 0 1
Data memory (integer and FP loads) 1 1
FP add 3 1
FP multiply (also integer multiply) 6 1
FP divide (also integer divide) 24 25

2024

• The stages where data is needed

• The stages where a result is available.

• FP loads and stores use a 64-bit path to memory, so the pipelining timing is just
like an integer load or store.

• The structure of the pipeline requires the introduction of additional pipeline
registers (e.g., A1/A2, A2/A3, A3/A4).

• The ID/EX register must be expanded to connect ID to EX, DIV, M1, and A1

• The forwarding is similar – check if the destination register in any of EX/MEM,
A4/MEM, M7/MEM, D/MEM, or MEM/WB registers is one of the source
registers of a FP instruction.
– If so, the appropriate input multiplexer will have to be enabled so as to choose the forwarded

data.

Advanced Pipelining

Cluj-Napoca 9

MULD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD IF ID A1 A2 A3 A4 MEM WB

LD IF ID EX MEM WB

SD IF ID EX MEM WB

The pipeline timing diagram for a set of independent FP operations.

2024

• The division unit is not fully pipelined, structural hazards can occur.
– Should be detected and issuing instructions will be stalled.

• The instructions have varying running times, the number of
register writes in a cycle can be larger than 1.

• WAW hazards are possible, since instructions no longer reach WB
in order.

• WAR hazards are not possible, the register reads always occur in
ID.

• Instructions can complete in a different order than they were
issued, causing problems with exceptions.

• Because of longer latency of operations, stalls for RAW hazards will
be more frequent.

Advanced Pipelining – Problems

Cluj-Napoca 10

2024

Advanced Pipelining

Cluj-Napoca 11

• Each instruction in this sequence is dependent on the previous and
proceeds as soon as data is available
– assumes the pipeline has full forwarding.

• The SD must be stalled an extra cycle so that its MEM does not
conflict with the ADDD.
– Extra hardware can handle this case (write buffer).

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD F4, 0
(R2)

IF ID EX MEM WB

MULD F0,
F4, F6

IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD F2,
F0, F8

IF stall ID stall stall stall stall stall stall A1 A2 A3 A4 MEM WB

SD 0 (R2),
F2

IF stall stall stall stall stall stall ID EX stall stall stall MEM

2024

• Hardware scheme – instruction parallelism
– Why in HW at run time?

• Works when one does not know real data dependence at compile time

• Code is not machine dependent

• Simpler compiler

– Key idea: Allow instructions behind stall to proceed.
DIVD F0, F2, F4

ADDD F10, F0, F8

SUBD F12, F8, F14

• Enables out-of-order execution out-of-order completion

• Split ID stage to check both for structural & data dependencies

• Scoreboard realized in 1963 for CDC 6600 (First supercomputer)

• No forwarding!

• Instructions execute when they are not dependent on previous
instructions and there are no hazards.

Dynamic Scheduling – Scoreboard Method

Cluj-Napoca 12

2024

Dynamic Scheduling – Scoreboard Method

Cluj-Napoca 13

The basic structure of a MIPS processor with a Scoreboard

• The scoreboard’s function is to control instruction execution (vertical control lines).
• All data flows between the RF and the FUs over the buses (the horizontal lines).
• 2 FP multipliers, 1 FP divider, 1 FP adder, and 1 integer unit.
• 2 inputs busses and 1 output bus serve a group of FUs.

[1]

2024

• Every instruction goes through the scoreboard, where a record of the data dependences
is constructed

– this step corresponds to instruction issue and replaces part of the ID step in the MIPS
pipeline.

• The scoreboard then determines when the instruction can read its operands and begin
execution.

• If the scoreboard decides the instruction cannot execute immediately, it monitors every
change in the hardware and decides when the instruction can execute.

• The scoreboard also controls when an instruction can write its result into the destination
register.

• Thus, all hazard detection and resolution is centralized in the scoreboard.

• Each instruction undergoes four steps in executing:

– Issue

– Read operands

– Execution

– Write results

Dynamic Scheduling – Scoreboard Method

Cluj-Napoca 14

[1]

2024

• Scoreboard stages:
– Issue – decode instructions & check for structural & WAW hazards (ID1)

• If a FU for the current instruction is free and no other active instruction has the
same destination register (WAW) The scoreboard issues the instruction to the
FU and updates its internal data structure.

• If a structural or WAW hazard exists, then the instruction issue stalls, and no
further instructions will issue until these hazards are cleared

– Read operands – wait until no RAW data hazards, then read operands (ID2)
• A source operand is available if

– No earlier issued active instruction is going to write it, or if
– The register containing the operand is being written by a currently active FU.

• Registers are only read when they are both available.
• When the source operands are available, the scoreboard tells the FU to proceed

to read the operands from the registers and begin execution.
• Because the operands are read only when both are available in the Register File,

the scoreboard does not take advantage of forwarding!
• The scoreboard resolves RAW hazards dynamically in this step, and instructions

may be sent into execution out of order

Dynamic Scheduling – Scoreboard Method

Cluj-Napoca 15

2024

• Scoreboard stages:
– Execute – operations with the operands (EX)

• The FU begins execution upon receiving the operands.

• When the result is ready, it notifies the scoreboard that it has completed
execution.

– Write result – finish execution (WB)

• Once the scoreboard is aware that the FU has completed execution, the
scoreboard checks for WAR hazards.

• If none, it writes results.

• If WAR, then it stalls the instruction

• Example

DIVD F0, F2, F4

ADDD F10, F0, F8

SUBD F8, F8, F14

• CDC 6600 scoreboard would stall SUBD until ADDD reads operands

– Scoreboard In-order issue – out-of-order execute & commit

Dynamic Scheduling – Scoreboard Method

Cluj-Napoca 16

2024

• Applying the Scoreboard method
– Timing: Latency (clock cycles) FP Addition = 2, Multiplication = 10,

Division = 40, Read Op = 1, Execute Load = 1
– In order Issue
– Stage and Hazard test

• Issue (Iss): Structural, WAW

• Read operand (Rop): RAW

• Write result (Wr): WAR

– For the given instruction sequence:
• Complete the following table

Dynamic Scheduling – Scoreboard Method

Cluj-Napoca 17

Instruction Str WAW Iss RAW Rop stE endE WAR Wr
1 LD F6 34+R2
2 LD F2 45+R3
3 MULD F0 F2 F4
4 SUBD F8 F6 F2
5 DIVD F10 F0 F6
6 ADDD F6 F8 F2

2 FP multipliers
1 FP divider
1 FP adder
1 integer unit.

2024

• Applying the Scoreboard method
– stE: start Execution

– endE: end Execution

– Str (structural), WAW, RAW, WAR: hazard type

– the number in hazard column shows the related instruction’s number

– The number in the Iss, Rop, stE, endE and Wr columns – clock cycle number

Dynamic Scheduling – Scoreboard Method

Cluj-Napoca 18

Instruction Str WAW Iss RAW Rop stE endE WAR Wr
1 LD F6 34+R2 1 2 3 3 4
2 LD F2 45+R3 1 5 6 7 7 8
3 MULD F0 F2 F4 6 2 9 10 19 20
4 SUBD F8 F6 F2 7 2 9 10 11 12
5 DIVD F10 F0 F6 8 3 21 22 61 62
6 ADDD F6 F8 F2 4 13 14 15 16 5 22

2024

• Scoreboard limits:
– A scoreboard uses the available ILP to minimize the number of stalls arising from the

program’s true data dependences.
– In eliminating stalls, a scoreboard is limited by several factors:

• The amount of parallelism available among the instructions
– If each instruction depends on its predecessor, no dynamic scheduling

scheme can reduce stalls
• The number of scoreboard entries

– Determines how far ahead the pipeline can look for independent
instructions. The set of instructions examined as candidates for potential
execution is called the window. The size of the scoreboard determines the
size of the window. We assume a window does not extend beyond a branch
 only straight-line code from a single basic block is inside the scoreboard

• The number and types of functional units
– Determines the importance of structural hazards, which can increase when

dynamic scheduling is used
• The presence of anti-dependences and output dependences

– These lead to WAR and WAW stalls
• No forwarding hardware

Dynamic Scheduling – Scoreboard Method

Cluj-Napoca 19

2024

• Tomasulo algorithm
– for IBM 360/91 about 3 years after CDC 6600 (1966)

– Goal: High Performance dynamic scheduling of the execution without
special compilers

– Differences between IBM 360 & CDC 6600 ISA

– IBM has only 2 register specifiers / instr. vs. 3 in CDC 6600

– IBM has 4 FP registers vs. 8 in CDC 6600

– Why Study? Implemented in

• Alpha 21264

• HP 8000

• MIPS 10000

• Pentium II

• PowerPC 604

• …

Dynamic Scheduling – Tomasulo Method

Cluj-Napoca 20

2024

Dynamic Scheduling – Tomasulo Method

Cluj-Napoca 21

The basic structure of MIPS FP Unit using Tomasulo’s algorithm

[1]

2024

• Tomasulo vs. Scoreboard
– Control & buffers distributed with Function Units (FU) vs. centralized in scoreboard
– FU buffers called “Reservation Stations” (RS); buffer the operands of instructions

waiting to issue
• RS fetches and buffers an operand as soon as it is available, eliminating the need to get the

operand from the Register File
• Pending instructions designate the RS that will provide their input
• When successive writes to a register appear, only the last one is actually used to update

the register

– Registers in instructions replaced by values or pointers to RS; called register
renaming
• Avoids WAR, WAW hazards
• More reservation stations than registers so can do optimizations that compilers cannot.

– Results are broadcasted over Common Data Bus (CDB)
– Load and Stores treated as FUs with RSs as well
– Common data bus: data + source

• 64 bits of data + 4 bits of Functional Unit source address
• Write if matches expected Functional Unit produces result
• Does the broadcast

Dynamic Scheduling – Tomasulo Method

Cluj-Napoca 22

2024

• Floating-point operations are sent from the instruction fetch unit into a queue.

• The reservation stations include the operation and the actual operands, as well
as information used for detecting and resolving hazards.

• Load buffers to hold the addresses for memory reads that are waiting for the
CDB.

• Similarly, store buffers are used to hold the destination memory addresses of
stores waiting for their operands.

• All results from either the FP units or the load unit are put on the CDB, which
goes to the FP register file as well as to the reservation stations and store
buffers.

• The FP adders implement addition and subtraction, while the FP multipliers do
multiplication and division

Dynamic Scheduling – Tomasulo Method

Cluj-Napoca 23

2024

• Tomasulo stages:
– Issue – get an instruction from the floating-point operation queue.

• If the operation is a floating-point operation, issue if there is an empty
reservation station, and send the operands to the reservation station if they are
in the registers.

• If the operation is a load or store, it can issue if there is an available buffer.

• If there is no empty reservation station or an empty buffer, then there is a
structural hazard and the instruction stalls until a station or buffer is freed.

• This step also performs the process of renaming registers.

– Execute – if one or more operands is not yet available, monitor the CDB
• When an operand becomes available, it is placed into the corresponding

reservation station.

• When both operands are available, execution starts.

• This step checks for RAW hazards

– Write result – finish execution (WB)
• When the result is available, write it on the CDB and from there into: registers,

reservation stations waiting for the result, and to any waiting store buffers.

• Mark the used reservation station as available

Dynamic Scheduling – Tomasulo Method

Cluj-Napoca 24

2024

• The major advantages of the Tomasulo scheme are:
– The distribution of the hazard detection logic

– The elimination of stalls for WAW and WAR hazards.

– The reduction in structural hazards – more reservation stations than
functional units

– CDB conflict may appear

– The first advantage arises from the distributed reservation stations and the
use of the CDB.

• If multiple instructions are waiting on a single result, and each instruction
already has its other operand, then the instructions can be released
simultaneously by the broadcast on the CDB.

• In Scoreboard the results are written in registers, and then read by the waiting
instructions

– WAW and WAR hazards are eliminated by renaming registers using the
reservation stations, and by storing operands into the reservation station as
soon as they are available.

Dynamic Scheduling – Tomasulo Method

Cluj-Napoca 25

2024

• Applying the Tomasulo Method
– Timing: Latency (clock cycles) FP Addition = 2, Multiplication = 10,

Division = 40, Read Op = 1, Execute Load = 1

– In order Issue

– Stage and Hazard test

• Issue (Iss): Structural

• Execute: RAW

• Write result (Wr): CDB conflict

– For the given instruction sequence:
• Complete the following table

Dynamic Scheduling – Tomasulo Method

Cluj-Napoca 26

Instruction Str Iss RAW stE endE CDB Wr
1 LD F6 34+ R2
2 LD F2 45+ R3
3 MULD F0 F2 F4
4 SUBD F8 F6 F2
5 DIVD F10 F0 F6
6 ADDD F6 F8 F2

2 FP multipliers
3 FP adder
1 Address unit.
> 5 Load & Store Buffers

2024

• Applying the Tomasulo Method
– stE: start Execution

– endE: end Execution

– Str (structural), RAW: hazard type

– CDB – common data bus conflict

– the number in hazard column shows the related instruction’s number

– The number in the Iss, stE, endE and Wr columns – clock cycle number

Dynamic Scheduling – Tomasulo Method

Cluj-Napoca 27

Instruction Str Iss RAW stE endE CDB Wr
1 LD F6 34+ R2 1 2 3 4
2 LD F2 45+ R3 2 3 4 5
3 MULD F0 F2 F4 3 2 6 15 16
4 SUBD F8 F6 F2 4 2 6 7 8
5 DIVD F10 F0 F6 5 3 17 56 57
6 ADDD F6 F8 F2 6 4 9 10 11

2024

• Tomasulo Drawbacks
– Complexity

– Many associative stores (CDB) at high speed

– Performance limited by Common Data Bus
• Multiple CDBsmore FU logic for parallel stores

• Load/store disambiguation
– The store buffers memorize the addresses and data such that the CPU does

not wait for memory writes

– The load and store can safely be done in a different order, provided the load
and store access different addresses.

– For every load the store addresses from the store buffers are examined

– If a store address matches the load address, we must stop and wait until the
store buffer gets a value; we can then access it or get the value from
memory.

• Tomasulo In-order issue – out-of-order execute & commit

Dynamic Scheduling – Tomasulo Method

Cluj-Napoca 28

2024

• Tomasulo Summary
– Reservations stations: renaming to larger set of registers + buffering source

operands
• Prevents number of registers as bottleneck
• Avoids WAR, WAW hazards of Scoreboard
• Allows loop unrolling in HW

– Contributions employed in modern processors
• Dynamic scheduling
• Register renaming
• Load/store disambiguation

– Tomasulo’s scheme is appealing if one needs to pipeline an architecture for
which it is difficult to schedule code or that has a shortage of registers

– The adv. of the Tomasulo approach vs. compiler scheduling for an efficient
single-issue pipeline are probably fewer than the costs of implementation.

– But, due to the simultaneous issuing of more instructions (superscalar) and
the necessity to improve the performance of difficult-to schedule code
(static), register renaming and dynamic scheduling are applied in modern
processors.

Dynamic Scheduling – Tomasulo Method

Cluj-Napoca 29

2024

• ILP: Overlap execution of unrelated instructions
– One opportunity – loop level parallelism

– The simplest and most common way to increase the amount of parallelism
available among instructions is to exploit parallelism among iterations of a
loop.

– This type of parallelism is often called loop-level parallelism

• Basic Pipeline Scheduling and Loop Unrolling
– Suppose standard MIPS pipeline with branch resolved in ID stage

– No structural hazard, at each clock cycle a new instruction is issued

ILP: Loop Unrolling and Software Pipelining

Cluj-Napoca 30

Instruction
producing result

Instruction
using result

Latency in
clock cycles

FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

Latency column shows the
number of clock cycles
needed to avoid a stall

2024

• Example – add the same value to the elements of an array in memory

• Without any scheduling the loop will execute as follows:

ILP: Loop Unrolling and Software Pipelining

Cluj-Napoca 31

Loop:
LD F0, 0(R1)
ADDD F4, F0, F2
SD 0(R1), F4
SUBI R1, R1, #8
BNEZ R1, Loop
NOP

F0 = vector element
add scalar in F2
store result
decrement pointer 8 bytes (DWord)
branch R1 != zero
branch delay slot

1
2
3
4
5
6
7
8
9

Loop:
LD F0, 0(R1)
stall
ADDD F4, F0, F2
stall
stall
SD 0(R1), F4
SUBI R1, R1, #8
BNEZ R1, Loop
stall

F0 = vector element

add scalar in F2

store result
decrement pointer 8 bytes (DW)
branch R1 != zero
branch delay slot

FP Loop: Where are the Hazards?

FP loop with stalls
• 9 clock cycles
• Rewrite the code to

minimize the stalls

2024

ILP: Loop Unrolling and Software Pipelining

Cluj-Napoca 32

1
2
3
4
5
6

Loop:
LD F0, 0(R1)
stall
ADDD F4, F0, F2
SUBI R1, R1, #8
BNEZ R1, Loop
SD 8(R1), F4

delayed branch
why 8(R1): to compensate the effect of SUBI
when accessing the memory location

• Replace BNEZ stall with SD and change address of SD
• 6 clocks: Unroll loop 4 times code to make faster?

2024

ILP: Loop Unrolling and Software Pipelining

Cluj-Napoca 33

Unroll loop 4 times

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Loop:
LD F0, 0(R1)
ADDD F4, F0, F2
SD 0(R1), F4
LD F6, -8(R1)
ADDD F8, F6, F2
SD -8(R1), F8
LD F10, -16(R1)
ADDD F12, F10, F2
SD -16(R1), F12
LD F14, -24(R1)
ADDD F16, F14, F2
SD -24(R1), F16
SUBI R1, R1, #32
BNEZ R1, LOOP
NOP

after LD 1 cycle stall
after ADDD 2 cycles stall
drop SUBI & BNEZ

drop SUBI & BNEZ

drop SUBI & BNEZ

alter to 4*8

• Stalls:
• LD – 1 stall
• ADDD – 2 stalls

• 15 + 4 x (1+2) = 27 clock cycles, or
6.8 per iteration

• Assumes R1 is multiple of 4
• How many registers do we need?

3 vs. 9

• This unrolled version is slower
than the scheduled version of the
original loop.

2024

ILP: Loop Unrolling and Software Pipelining

Cluj-Napoca 34

Unrolled loop that minimizes stalls

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Loop:
LD F0, 0(R1)
LD F6, -8(R1)
LD F10, -16(R1)
LD F14, -24(R1)
ADDD F4, F0, F2
ADDD F8, F6, F2
ADDD F12, F10, F2
ADDD F16, F14, F2
SD 0(R1), F4
SD -8(R1), F8
SD -16(R1), F12
SUBI R1, R1, #32
BNEZ R1, LOOP
SD 8(R1), F16 8-32 = -24 the SUBI effect

• What assumptions made when
code moved?

• OK to move store past SUBI even
though changes register

• OK to move loads before stores:
get right data?

• 14 clock cycles, or 3.5 per
iteration.

• Using new registers is equivalent
to register renaming (done by
programmer or compiler)

2024

• A MIPS machine has the following resources:

• Show the execution of the following instructions with
– Scoreboard Method

– Tomasulo Method

– Draw the table for each method

– Highlight the possible hazards and how they

are resolved

Problems – Homework

Cluj-Napoca 35

Functional Unit Nr. Clock Cycles in EX Stage

Integer Unit 1 1

FADD Unit 2 3

FMUL Unit 1 10

FDIV Unit 1 40

Instruction
1 ADDD F6,F8,F2
2 SD F6, 100(R3)
3 MULD F6,F6,F2
4 ADDD F6,F6,F4
5 DIVD F8,F1,F6
6 ADDD F6,F8,F2
7 ADDD F1,F3,F2

2024

1. D. A. Patterson and J. L. Hennessy, “Computer Organization and
Design: A Quantitative Approach”, 5th edition, ed. Morgan-
Kaufmann, 2011

2. D. A. Patterson, J. L. Hennessy, “Computer Organization and
Design: The Hardware/Software Interface”, 5th edition, ed.
Morgan–Kaufmann, 2013.

3. MIPS32™ Architecture for Programmers, Volume I: “Introduction
to the MIPS32™ Architecture”.

4. MIPS32™ Architecture for Programmers Volume II: “The MIPS32™
Instruction Set”.

References

Cluj-Napoca 36

