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Processor (Single Core) vs. Memory (DRAM) Performance Gap [1]

Memory Technology Typical Access Time Cost / GBin 2012
SRAM semiconductor memory 0.5-2.5ns S500 - $1000
DRAM semiconductor memory 50—-70ns $10-S20
Flash semiconductor memory 5,000 — 50,000 ns S0.75-51.00
Magnetic disk 5,000,000 - 20,000,000 ns $0.05-50.10

2024 Cluj-Napoca 2



Memory Hierarchy 235+

clf wemory Levels of memory hierarchy [1]
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Distance from Processor = lower speed but greater size

Cache — a safe place for hiding or storing things!
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CPU CPU L O e i
| Package | CPU | | D
L1 | [ D 1| CPU | | [D L2
| | L2
Cache e 2 | i
Chipset — DRAM Chipset H DRAM Chipset — DRAM Chipset — DRAM Chipset — DRAM Chipset — DRAM
Mid-1980s Early 1990s Mid-1990s Mid-1990s Late 1990s Early 2000s
Mo on die cache L1 cache on die Separate instruction Separate bus to L2 L2 cache on die L3 cache on die
L1 cache on motherboard L2 on motherboard and data caches cache in same package

The Evolution of the Memory Hierarchy. Separate Instruction and Data Caches

Why hierarchy works? The Principle of Locality:

* Temporal Locality — Locality in Time
= |f a data location is referenced then it will tend to be referenced again soon
= Keep most recently accessed data items closer to the processor.

e Spatial Locality — Locality in Space
= |f a data location is referenced, nearby addresses will tend to be referenced soon
= Move blocks consisting of contiguous words to the upper levels.
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* Hit: data requested is in upper level.

* Miss: data requested is not in upper level.

* Hit rate: fraction of memory accesses that are hits (i.e., found at upper level).

* Miss rate: fraction of memory accesses that are not hits: miss rate = 1 — hit rate

* Hit time: time to determine if the access is a hit + time to access and deliver the data from
the upper level to the CPU.

* Miss penalty: time to determine if the access is a miss + time to replace block at upper
level with corresponding block at lower level + time to deliver the block to the CPU

* Average memory access time (AMAT) = Hit time + Miss rate x Miss penalty

Hit
- >

w

Processor (¢uesssl)p Cache () M’Z‘;’gw
D

4
-

Miss [1]

* To improve performance > reduce AMAT

— Reduce the miss rate, miss penalty, or the hit time
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Cache Memories 3=
Line Memory
number Tag Block address

0 0

b -

. )

2 \_ Block 0
3 k (K words)
Block length

(K words) .
(a) Cache

Block M-I

Word
- length

(b) Main memory

Block in Cache and Main Memory [1]
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* 4 Problems for Cache Memory Specification

— Q1: Where can a block be placed in the Cache? (Block placement)
e Associativity: Fully Associative, Set Associative, Direct Mapped

— Q2: How is a block found in the Cache? (Block identification)
* Tag / Index / Block

— Q3: Which block should be replaced on a Cache miss? (Block replacement)
e Random, LRU, FIFO, NLRU, FIFO with exception for most recently used

— Q4: How to write in the Cache? (Write strategy)
* Write Back or Write Through, Write Buffer
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“Ii Q1: Block Placement in the Cache Memory  2%:=

Fully associative: Direct mapped: Set associative:
block 12 can go block 12 can go block 12 can go H .
anywhere only into block 4 anywhere in set 0 CaChe Memory Organlzathn
{12 mod 8) {12 mod 4)
Block 01234567 Block 01234567 Block 01234567 ° D d h hbl k
o, o, o, irect Mapped Cache — each bloc
has only one corresponding place in
Cache the cache
st set st 5ot © FUlly Associative Cache —a block
°c 1 2 3 can be placed anywhere in the
Block frame address
cache
Block 1111111111222222222233
no. D1234567890123456789012345678901
* Set Associative Cache — a block can
Memory be placed in a restricted set of
places in the cache. N setsin a
cache = N-way Set Associative
Example: Cache memory with 8 blocks [1]
Address mapping for set assoc. cache: (Block address) MOD (Nb. sets in the cache)

“The miss rate of a Direct Mapped Cache of size X is about the same as
for a 2- to 4-way Set Associative cache of size X/2”
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“Ii Q1: Block Placement in the Cache Memory %=
Block Tag Data Set Tag Data Tag Data
0 0
1 Set = a group of blocks, 1
5 Index in the cache memory 5
3 3
4 2-way Set Associative Cache
> Set Tag Data Tag Data Tag Data Tag Data
6 0
7 1
Direct Mapped Cache A-way Set Associative Cache

1-way Set Associative Cache

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

8-way Set Associative (Fully Associative)

Configurations of an 8-block cache with different degrees of associativity.
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‘II' Q2: Block Identification in the Cache Memory gﬁ?
l Block address Block
Tag Index offsat

Address for a Set Associative or Direct Mapped Cache

A fully Associative caches has no index field Address (showing bit positions)
3130 --- 131211---2 10
Byte
Memory address (n bits) oftset
Hit 420 410
Tag [ndex Byte " Tag
(n — k — m|(K bits) (m bits) Index
bits) (5elects data within line if hit occurs)
Cache memory Index Valid Tag Data
Line 0 0
Line 1 ;
(Selects a line : :
within cache) : : - [
— ] -
: H 1021
) * 1022
Line 2k _1 1023
Tags Data 429 4.32
{Only one comparison J
must be done) (= Data
w| Comparator |
Argument tag Stored tag
|—-' Hit?
Direct Mapped Cache — general [1] Direct Mapped Cache, 1024, 1-word blocks [1]
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il'i Q2: Block Identification in the Cache Memory

tag

index

Block offset

Byte offset

Valid

Tag

Data

Direct Mapped Cache with multiple data/tag. Taking advantage of spatial locality
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illi Q2: Block Identification in the Cache Memory £33

5£

Huadll 15 e 3210

: 16 12 J2 Byte
) LY y ) .y
I:l:t Tag o T offect D‘ata
[l e Block offset
A6 bits 128 bits N
Vo Tag o Cata i
f ]
] ] » ™ » ¥ 4K
entries
L J
"'JI b ‘o "'h;-:il "'-?2 “+

Direct Mapped Cache with multiple data/tag [1]. Taking advantage of spatial locality

* 64 KB cache, 4K blocks, 4 words per block; byte offset ignored — we read words (32 bits)
from cache; block offset — which word to read.
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il'i Q2: Block Identification in the Cache Memory $3%%-

‘5

* N-way Set Associative Cache: N entries for each cache index
— N Direct Mapped Caches that operate in parallel

tag index Block offset Byte offset

Valid Tag Data Block Valid Tag Data Block

v v
> = =
I_’ i I_pﬁ e Data
—’7/ ene W—/ e N \
/ rd S

0] P Data

—

— Hit

/

2-way Set Associative Cache with 2 comparators and 1 multiplexer
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31 30 e w12 11 10 S B a2 10

22 ..| g
o

Index Voo Tag  Data W Tag Data W Tag  Data W Tag Data

5— to-1 multiple xD

Hit Data
4-way Set Associative Cache Memory [1]

* 4-way set-associative cache with 4 comparators and one 4-to-1 multiplexor
» Size of cache: 4 KB cache, 1K blocks = 256 sets * 4-block/set (4x256 blocks, 1 word per block)
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“Ii Q2: Block Identification in the Cache Memory

 Advantages of Set Associative Cache
— Higher Hit rate for the same cache size.

— Fewer Conflict Misses.

Disadvantages of Set Associative Cache

— N-way Set Associative Cache versus Direct Mapped Cache

N comparators vs. 1

Extra MUX delay for the data

Data comes AFTER Hit/Miss decision and set selection

In a Direct Mapped Cache, Cache Block is available BEFORE Hit/Miss
Possible to assume a hit and continue. Recover later if miss.

2024
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“Ii Q2: Block Identification in the Cache Memory $3%%-

Way 7 Way 6 Way 5 Way 4 Way 3

Way 2 Way 1 Way O

I I I I I I I I I
V Tag Data W Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data

Fully Associative cache, 8 blocks

tag Block offset ‘ Byte offset

Valid Tag Data Block

Valid Tag Data Block

Valid Tag Data Block

’% .

ENB }_
» J

Fully Associative Cache Memory

P Data

[1]
Fully Associative Cache

No Cache Index.

Compare the Cache Tags of all
cache entries in parallel.
Needs a lot of comparators.
Implemented using content
addressable memory (CAM).
Conflict Miss = 0 for a fully
associative cache.
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Q3: Block Replacement on a Cache Miss iy

* Direct Mapped Cache — easy: only one possible block to replace

* Associative cache — need a block replacement algorithm

— Least Recently Used (LRU)
* Expensive — keeps track when an element in the set was used
* For 2-way set assoc. — use 1 bit (USE bit)
* On a block reference Use bit € 1; Use Bit of the other block €< 0
* For fully associative — keep track of all references. Use a list: the most recently
used block is the front of the list. The last block in the list is replaced
— First-In-First-Out (FIFO)
e Replace the block that has been in the cache longest
e Easy to implement as a round-robin or circular buffer reference

— Least Frequently Used (LFU)
e Counter per block that increments on reference
* Block with lowest count is replaced
— Most Recently Used (MRU)
— Random
* Victim blocks are randomly selected
e Simulations indicate almost as good as LRU

2024 Cluj-Napoca 17
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Q4: Write Strategy for Cache Memories 235

Tag

Index

Block
Qffset

4 b

Data

2I-<
lines

Cache write

Data Word or Byte

Modifying a block cannot begin until the tag is checked to see if the address

is a hit.

Tag checking is done before the write = writes normally take longer than

reads.

Write size: 1 — 8 bytes specified; only that portion of a block can be changed.

In contrast, reads can access more bytes than necessary

Pipelined writes: hold write data for store in single buffer ahead of cache,
write cache data during next store’s tag check

2024
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“Ii Q4: Write Strategy for Cache Memories 335

* Write Policy Choices
— Write-Through (WT)
* Replaces a block in the cache and low-level memory to avoid inconsistency

e Write-through is slow because it always requires a write in main memory

* Performance is improved with a write buffer where blocks are stored while

waiting to be written to memory — processor can continue execution until write
buffer is full

* Advantages: read misses do not result in writes and assures data coherency

— Write-Back (WB)
 Write the data block only into the cache and write-back the block to main
memory only when it is replaced in the cache
* More efficient than write-through, more complex to implement

* Adirty bit per block can further reduce the traffic

— Write Once — first write as write-through, the followings as write back

2024 Cluj-Napoca 19



“Ii Q4: Write Strategy for Cache Memories 335

 Write miss actions: allocate block if it’s a miss?

— Write allocate — the block is allocated on a write miss, followed by the write
hit.

— No write allocate — only write to main memory.

— Common combinations

* Write through and no write allocate, even if there are subsequent writes to that
block, the writes must still go to the lower level memory.

— WT combined with write buffers so that it doesn’t wait for memory.

* Write back with write allocate, hoping that subsequent writes to that block will
be captured by the cache

2024 Cluj-Napoca 20



“Ii Q4: Write Strategy for Cache Memories 335

e \Write Buffer

— Contains evicted dirty lines for WB cache or all writes in WT cache
— It reduces Read Miss Penalty

* Processor is not stalled on writes, read misses can go ahead of writes to main

memory
‘ache |s—— Cache [ll—
Processor Cache DRAM Processor ‘ ;- l II el  DIRAN
ache
—
Write Buffer Write Buller

— Implemented as a FIFO (queue) — holds data to be written to memory
— Memory controller writes contents of the buffer to memory

* Frees the write buffer data entry after completing memory write

 Stall the CPU if write buffer is full
— Problem: Write Buffer may hold a value needed by a read miss!

e Simple: on a read miss, wait for the write buffer to go empty

* Faster: check write buffer addresses against read miss addresses

— if no match, allow read miss to go ahead of writes, else
— return the value from the write buffer

2024 Cluj-Napoca 21
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 AMAT (average memory access time)

* CPUTime
AMAT = Hit time + Miss rate x Miss penalty

CPU time = (CPU Execution clock cycles + Memory stall clock cycles) x Clock cycle time

. Memory stall clock cycles .
CPU time =IC x | CPI__  ion + Y _ Y x Clock cycle time
Instruction
] i Memory access ] ]
CPUtime = IC x | Miss rate x y : x Miss penalty | xClock cycle time
Instruction

CPU Execution clock cycles — includes the execution clock cycles and the memory access for
a cache hit

Memory stall clock cycles — includes the auxiliary penalties for working with memory
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Causes for Cache Misses 33e=

e 3 (C’s model

— Compulsory: first-reference to a block (cold start misses)
* Misses that would occur even with infinite cache

— Capacity: cache is too small to hold all data needed by the program
* Misses that would occur even under perfect replacement policy

— Conflict: misses that occur because of collisions due to block-placement

strategy

* Misses that would not occur with full associativity

e At C: Coherence
— Misses caused by cache coherence (Multiprocessors)

Design change

Effect on miss rate

Possible negative performance effect

Increase cache size

Decreases capacity misses

May increase access time

Increase associativity

Decreases miss rate due
to conflict misses

May increase access time

Increase block size

Decreases miss rate due
to spatial locality

Increases miss penalty. Very large
block size can increase miss rate

2024
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55
CPU CPU 4 word wide CPU
> Q memory and bus < >
Cache T  T1TT 1T ~TT T Cache
| Cache |
T~ = — T T~
Bus Bus Bus
- g e T~ .
4 word wide memory
Memory || Memory || Memory || Memory .
Memory banko || bank1 || bank2 || panka | INterleaved memory units
b. Wide memory organization c. Interleaved memory organization Compete for bUS
Merory Example: we assume
* cache block of 4 words
* 1 clock cycle to send address to memory address buffer (1 bus cycle)
* 15 clock cycles for each memory data access
* 1 clock cycle to send data to memory data buffer (1 bus cycle)

a. One-word-wide
memory organization

Miss penalties
* a:1+4*15+4*1 =65 cycles
e b:1+1*15+1*%1 =17 cycles
Improving Cache Performance by Increasing Bandwidth [1] ¢ € 1+1%15+4%1 =20 cycles
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“Ii Cache Memory Evolution 3%

Processor | Year Fr?l?/luHezr;cy DaLtng;(}he InstruLcet\i/c?r: 1Cache Level 2 Cache
80386 1985 12 -40 none none None
80486 1989 16 — 150 8 KB unified None on chip
Pentium 1993 60— 100 8 KB 8 KB None on chip
Pentium Pro | 1995 150 — 200 8 KB 8 KB 256 KB—1 MB
Pentium Il | 1997 233 — 450 16 KB 16 KB 256 KB — 512 KB
Pentium Il | 1999 | 450 - 1400 16 KB 16 KB 256 KB — 512 KB
Pentium4 | 2001 | 1400 - 3730 8-16 KB 12 KB 256 KB — 2 MB
Pentium M | 2003 | 900 - 2130 32 KB 32 KB 1—2 MB on chip
CoreDuo | 2005| 1500-2160| 32KB/ core 32 KB / core ih':f)B shared on
Skylake 2015| Upto4200| 32KB/ core 32KB /core | 220 KB/ Core
(Core 17) (8 M L3 cache)

Evolution of intel IA-32 Microprocessor Cache Memory Systems

2024
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‘ ' Virtual Memory iy

Virtual address space, i.e., space addressable by a program is
determined by ISA

* Main memory size < disk size < virtual address space size

e Virtual memory is organized in fixed-size (power of 2, typically at
least 4 KB) blocks, called pages

* Physical memory is considered a collection of pages of the same
Size

 The unit of data transfer between disk and physical memory is a
page

* Advantages of Virtual Memory:
— lllusion of having more physical memory

— Program reallocation
— Protection

2024 Cluj-Napoca 26



“Ii Virtual Memory

Main Memory acts like a cache for the secondary memory (disk)

Pages: virtual memory blocks

Page faults

The data is not in main memory -2 retrieve it from disk

Huge miss penalty, thus pages should be fairly large (e.g., 4 KB)
Reducing page faults is important = LRU is worth the price
Can handle the faults in software instead of hardware
Overhead is small compared to the disk access time

Using write-through is too expensive so write back is used

2024
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Virtual Physical
address address
0 A 0
4K B |— 4K C
8K C 8K
12K D 12K Physical
— 16K A main memory
Virtual memory 50K
— 24K B
28K
—
\\_
Disk

The logical program — contiguous virtual address space: four pages A, B, C, and D. [1]
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‘ ' Virtual Memory iy

Virtual addresses Physical addresses
A Physical page can be shared

. ddress translation
*— | by 2 virtual addresses to
. share data or code.
=
- -

™ /
Example: OS code shared by
more programs

Disk addresses

The actual location of the blocks is in physical main memory and on the disk [1]

Mapping of pages from a virtual address to a physical address or disk address:
 Main memory acts as cache for secondary storage (disk)
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* Translation from virtual address (VA) to physical address (PA)
hit
- VE PA miss WA FA . miss .
Trans- 1 Cach Main CPU L;L- kE:p Cache ME?:: ry
Py lation ache MEI’“OI‘Y miss _hit T
7 h“f 7 T Trans-
data b lation
VA — PA translation with Page Tables — { dat

VA — PA translation with Page Tables + TLB

Virtual address

Virtual memory = 232= 4GB
15141312111098 3210

313029 28 27

The number of bits in the page
offset field determine the page
size (4 KB)

Virtual page number Page offset

No. of page = 218

29 28 27

Page size = 2'2 = 4KB

vevruas frereeaes 1514131211 1098 ---pe---

Usually, number of virtual pages

Physical page number Page offset > number Of physical pages
1 _
[ ] Physical address Main memory = 218+12 - 1GB
2024 Cluj-Napoca 30
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Virtual page
Virtual address number
Page table .
Virtual page number Page offset Physical page or Physical memory
Valid disk address
1 -
1 —__
Main 1
memory 1
1
Page . .
table Physical address : ¢ Disk storage
1

The mapping of a virtual address to a physical address via a page table [1]
Page table maps virtual page to either physical page or disk page

How Do You Place the Page and Find it Again?

Locate pages by an index table: page table

Each program has its own page table.

A register (page table register) points to the start of the page table.
The Page Table Implements Virtual to Physical Address Translation

2024 Cluj-Napoca 31



335
“Ii Virtual Memory — Page Table 3%

virtual address

31 1211 0
page table hase register virtual page number page offset

valid access  physical page number

WPM acts as . :
table index

if valid=0

then page -—
is not in memaory

and page fault exception

29 v 1211 ¥ 0
physical page number page offset

physical address

Address translation using the Page Table [1]
page size 4 KB, virtual address space 4 GB, physical memory 1 GB,
virtual page number = 20 bits, physical page number = 18 bits

To avoid large page table sizes:
* Each program has its own page table.
* Page table register points to start of program’s page table.
* Other techniques — multiple-level page tables, hashing virtual address, etc.
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“Ii Virtual Memory

 Where to Place the Requested Pages? (in main memory)

If some pages are empty, use them

If all pages in main memory are in use, choose a page to replace it
LRU replacement (least recently used)

Replaced pages are written to swap space on the disk

Making Address Translation Fast: TLB (translation look aside buffer)

Address translation mechanism — Slow

Two cycle memory access, the page tables are stored in main memory.
One memory access to obtain the physical address,

Second access to get the data

TLB — cache for recently used Page Table Entries

2024
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g%
TLB
Virtual page Physical page
number Valid Dirty Ref Tag address
I |

110701 ..
11101 . Physical memaory
1111 ~— :

= 1 [0]1 .-
0(0]0
110]1

Page table
Physical page
Valid Dirty Ref or disk address
=]

T[T -~
e Do
1101 -~

~[110]1 1
IOt - "
KRN e
T]1]1 i T e A

Translation with TLB: TLB — fully associative cache [1]
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Virtual address

31 B0 20 orrreerreeeeree 14 13 12 11 10 9.8 2 1 0 Fully associative TLB [1]
| T F'*‘ge""sew‘m | Implemented as a direct mapped cache
Vi ity . sl page mome Data read — 16 words in a block
TL;:: = %E : Qn a page reference,.look up the
o— virtual page number in the TLB
e‘_ 420
FPhysical page number | Page offset If TLB hit: .
——— o A Get the physical page number
D Ie 1s +2 * Turn on the reference bit
e Turn on the dirty bit if write
s - If TLB miss:
Vaiid Tag T =  Look up the page table
cacne * If miss again then true page
- 1 fault

cashohi ~ (T f] TLB, Typical values:
16 — 512 entries

* Miss-rate: 0.01% — 1%.
* Miss-penalty: 10 — 100 cycles

432

o

Data
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A CPU generates 32-bit addresses for a byte addressable memory.
Design an 8 KB cache memory for this CPU (8 KB is the cache size
only for the data; it does not include the tag). The block size is 32
bytes. Show the block diagram, and the address decoding for

— direct mapped cache memory

— 4-way set associative cache memory
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