
Computer Architecture

Lecturer: Mihai Negru

2nd Year, Computer Science

Technical University of Cluj-Napoca

Computer Science Department

Lecture 11: Memory

http://users.utcluj.ro/~negrum/

http://users.utcluj.ro/~negrum/

2024

Processor – Memory Performance Gap

Cluj-Napoca 2

Processor (Single Core) vs. Memory (DRAM) Performance Gap [1]

Memory Technology Typical Access Time Cost / GB in 2012

SRAM semiconductor memory 0.5 – 2.5 ns $500 – $1000

DRAM semiconductor memory 50 – 70 ns $10 – $20

Flash semiconductor memory 5,000 – 50,000 ns $0.75 – $1.00

Magnetic disk 5,000,000 – 20,000,000 ns $0.05 – $0.10

2024

Memory Hierarchy

Cluj-Napoca 3

Distance from Processor  lower speed but greater size

Cache – a safe place for hiding or storing things!

Levels of memory hierarchy [1]

Goal:
illusion of large, fast, cheap memory

2024

Memory Hierarchy Evolution

Cluj-Napoca 4

The Evolution of the Memory Hierarchy. Separate Instruction and Data Caches

Why hierarchy works? The Principle of Locality:

• Temporal Locality – Locality in Time
 If a data location is referenced then it will tend to be referenced again soon
 Keep most recently accessed data items closer to the processor.

• Spatial Locality – Locality in Space
 If a data location is referenced, nearby addresses will tend to be referenced soon
 Move blocks consisting of contiguous words to the upper levels.

2024

• Hit: data requested is in upper level.

• Miss: data requested is not in upper level.

• Hit rate: fraction of memory accesses that are hits (i.e., found at upper level).

• Miss rate: fraction of memory accesses that are not hits: miss rate = 1 – hit rate

• Hit time: time to determine if the access is a hit + time to access and deliver the data from
the upper level to the CPU.

• Miss penalty: time to determine if the access is a miss + time to replace block at upper
level with corresponding block at lower level + time to deliver the block to the CPU

• Average memory access time (AMAT) = Hit time + Miss rate x Miss penalty

• To improve performance reduce AMAT
– Reduce the miss rate, miss penalty, or the hit time

Cache Memory Terminology

Cluj-Napoca 5

[1]

2024

Cache Memories

Cluj-Napoca 6

Block in Cache and Main Memory [1]

2024

• 4 Problems for Cache Memory Specification

– Q1: Where can a block be placed in the Cache? (Block placement)

• Associativity: Fully Associative, Set Associative, Direct Mapped

– Q2: How is a block found in the Cache? (Block identification)

• Tag / Index / Block

– Q3: Which block should be replaced on a Cache miss? (Block replacement)

• Random, LRU, FIFO, NLRU, FIFO with exception for most recently used

– Q4: How to write in the Cache? (Write strategy)

• Write Back or Write Through, Write Buffer

Cache Memories

Cluj-Napoca 7

2024

Q1: Block Placement in the Cache Memory

Cluj-Napoca 8

Example: Cache memory with 8 blocks [1]

Cache Memory Organization

• Direct Mapped Cache – each block
has only one corresponding place in
the cache

• Fully Associative Cache – a block
can be placed anywhere in the
cache

• Set Associative Cache – a block can
be placed in a restricted set of
places in the cache. N sets in a
cache  N-way Set Associative

Address mapping for set assoc. cache: (Block address) MOD (Nb. sets in the cache)

“The miss rate of a Direct Mapped Cache of size X is about the same as
for a 2- to 4-way Set Associative cache of size X/2”

2024

Q1: Block Placement in the Cache Memory

Cluj-Napoca 9

Block Tag Data

0

1

2

3

4

5

6

7

Set Tag Data Tag Data

0

1

2

3

Set Tag Data Tag Data Tag Data Tag Data

0

1

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Direct Mapped Cache
1-way Set Associative Cache

8-way Set Associative (Fully Associative)

Configurations of an 8-block cache with different degrees of associativity.

2-way Set Associative Cache

4-way Set Associative Cache

Set = a group of blocks,
Index in the cache memory

2024

Q2: Block Identification in the Cache Memory

Cluj-Napoca 10

Address for a Set Associative or Direct Mapped Cache
A fully Associative caches has no index field

Direct Mapped Cache – general [1] Direct Mapped Cache, 1024, 1-word blocks [1]

2024

Q2: Block Identification in the Cache Memory

Cluj-Napoca 11

Direct Mapped Cache with multiple data/tag. Taking advantage of spatial locality

2024

Q2: Block Identification in the Cache Memory

Cluj-Napoca 12

Direct Mapped Cache with multiple data/tag [1]. Taking advantage of spatial locality

• 64 KB cache, 4K blocks, 4 words per block; byte offset ignored – we read words (32 bits)
from cache; block offset – which word to read.

2024

• N-way Set Associative Cache: N entries for each cache index
– N Direct Mapped Caches that operate in parallel

Q2: Block Identification in the Cache Memory

Cluj-Napoca 13

2-way Set Associative Cache with 2 comparators and 1 multiplexer

2024

Q2: Block Identification in the Cache Memory

Cluj-Napoca 14

4-way Set Associative Cache Memory [1]

• 4-way set-associative cache with 4 comparators and one 4-to-1 multiplexor
• Size of cache: 4 KB cache, 1K blocks = 256 sets * 4-block/set (4x256 blocks, 1 word per block)

2024

• Advantages of Set Associative Cache
– Higher Hit rate for the same cache size.

– Fewer Conflict Misses.

• Disadvantages of Set Associative Cache
– N-way Set Associative Cache versus Direct Mapped Cache

• N comparators vs. 1

• Extra MUX delay for the data

• Data comes AFTER Hit/Miss decision and set selection

• In a Direct Mapped Cache, Cache Block is available BEFORE Hit/Miss

• Possible to assume a hit and continue. Recover later if miss.

Q2: Block Identification in the Cache Memory

Cluj-Napoca 15

2024

Q2: Block Identification in the Cache Memory

Cluj-Napoca 16

Fully Associative cache, 8 blocks [1]

Fully Associative Cache

• No Cache Index.
• Compare the Cache Tags of all

cache entries in parallel.
• Needs a lot of comparators.
• Implemented using content

addressable memory (CAM).
• Conflict Miss = 0 for a fully

associative cache.

Fully Associative Cache Memory

2024

• Direct Mapped Cache – easy: only one possible block to replace
• Associative cache – need a block replacement algorithm

– Least Recently Used (LRU)
• Expensive – keeps track when an element in the set was used
• For 2-way set assoc. – use 1 bit (USE bit)
• On a block reference Use bit 1; Use Bit of the other block  0
• For fully associative – keep track of all references. Use a list: the most recently

used block is the front of the list. The last block in the list is replaced

– First-In-First-Out (FIFO)
• Replace the block that has been in the cache longest
• Easy to implement as a round-robin or circular buffer reference

– Least Frequently Used (LFU)
• Counter per block that increments on reference
• Block with lowest count is replaced

– Most Recently Used (MRU)
– Random

• Victim blocks are randomly selected
• Simulations indicate almost as good as LRU

Q3: Block Replacement on a Cache Miss

Cluj-Napoca 17

2024

• Cache write
– Modifying a block cannot begin until the tag is checked to see if the address

is a hit.

– Tag checking is done before the write  writes normally take longer than
reads.

– Write size: 1 – 8 bytes specified; only that portion of a block can be changed.

– In contrast, reads can access more bytes than necessary

– Pipelined writes: hold write data for store in single buffer ahead of cache,
write cache data during next store’s tag check

Q4: Write Strategy for Cache Memories

Cluj-Napoca 18

2024

• Write Policy Choices
– Write-Through (WT)

• Replaces a block in the cache and low-level memory to avoid inconsistency

• Write-through is slow because it always requires a write in main memory

• Performance is improved with a write buffer where blocks are stored while
waiting to be written to memory – processor can continue execution until write
buffer is full

• Advantages: read misses do not result in writes and assures data coherency

– Write-Back (WB)

• Write the data block only into the cache and write-back the block to main
memory only when it is replaced in the cache

• More efficient than write-through, more complex to implement

• A dirty bit per block can further reduce the traffic

– Write Once – first write as write-through, the followings as write back

Q4: Write Strategy for Cache Memories

Cluj-Napoca 19

2024

• Write miss actions: allocate block if it’s a miss?

– Write allocate – the block is allocated on a write miss, followed by the write
hit.

– No write allocate – only write to main memory.

– Common combinations

• Write through and no write allocate, even if there are subsequent writes to that
block, the writes must still go to the lower level memory.

– WT combined with write buffers so that it doesn’t wait for memory.

• Write back with write allocate, hoping that subsequent writes to that block will
be captured by the cache

Q4: Write Strategy for Cache Memories

Cluj-Napoca 20

2024

• Write Buffer
– Contains evicted dirty lines for WB cache or all writes in WT cache

– It reduces Read Miss Penalty
• Processor is not stalled on writes, read misses can go ahead of writes to main

memory

– Implemented as a FIFO (queue) – holds data to be written to memory

– Memory controller writes contents of the buffer to memory
• Frees the write buffer data entry after completing memory write

• Stall the CPU if write buffer is full

– Problem: Write Buffer may hold a value needed by a read miss!
• Simple: on a read miss, wait for the write buffer to go empty

• Faster: check write buffer addresses against read miss addresses

– if no match, allow read miss to go ahead of writes, else

– return the value from the write buffer

Q4: Write Strategy for Cache Memories

Cluj-Napoca 21

2024

• AMAT (average memory access time)

• CPU Time

Cache Memory Performance

Cluj-Napoca 22

Memory stall clock

AMAT = Hit time + Miss rate Miss penalty

CPU time = (CPU Execution clock cycles +) Clock cycle time

CPU time = IC

 cycles

Memory stall clock cycles

Instruct
CPI

o

i n
execution





 
  

 

Memory access
Miss rate Miss penalty

In

 Clock cycle time

CPUtime = IC Clock cycle ti
str

m
o

e
ucti n



 
  

 
 

CPU Execution clock cycles – includes the execution clock cycles and the memory access for
a cache hit

Memory stall clock cycles – includes the auxiliary penalties for working with memory

2024

• 3 C’s model
– Compulsory: first-reference to a block (cold start misses)

• Misses that would occur even with infinite cache

– Capacity: cache is too small to hold all data needed by the program
• Misses that would occur even under perfect replacement policy

– Conflict: misses that occur because of collisions due to block-placement
strategy
• Misses that would not occur with full associativity

• 4th C: Coherence
– Misses caused by cache coherence (Multiprocessors)

Causes for Cache Misses

Cluj-Napoca 23

Design change Effect on miss rate Possible negative performance effect

Increase cache size Decreases capacity misses May increase access time

Increase associativity Decreases miss rate due
to conflict misses

May increase access time

Increase block size Decreases miss rate due
to spatial locality

Increases miss penalty. Very large
block size can increase miss rate

2024

Cache Memory Connections

Cluj-Napoca 24

Improving Cache Performance by Increasing Bandwidth [1]

Example: we assume
• cache block of 4 words
• 1 clock cycle to send address to memory address buffer (1 bus cycle)
• 15 clock cycles for each memory data access
• 1 clock cycle to send data to memory data buffer (1 bus cycle)

Miss penalties
• a: 1 + 4*15 + 4*1 = 65 cycles
• b: 1 + 1*15 +1*1 = 17 cycles
• c: 1 +1*15 + 4*1 = 20 cycles

4 word wide
memory and bus

4 word wide memory
Interleaved memory units
compete for bus

2024

Processor Year
Frequency

(MHz)
Level 1

Data Cache
Level 1

Instruction Cache
Level 2 Cache

80386 1985 12 – 40 none none None

80486 1989 16 – 150 8 KB unified None on chip

Pentium 1993 60 – 100 8 KB 8 KB None on chip

Pentium Pro 1995 150 – 200 8 KB 8 KB 256 KB – 1 MB

Pentium II 1997 233 – 450 16 KB 16 KB 256 KB – 512 KB

Pentium III 1999 450 – 1400 16 KB 16 KB 256 KB – 512 KB

Pentium 4 2001 1400 – 3730 8-16 KB 12 KB 256 KB – 2 MB

Pentium M 2003 900 – 2130 32 KB 32 KB 1 – 2 MB on chip

Core Duo 2005 1500 – 2160 32 KB / core 32 KB / core
2 MB shared on
chip

Skylake
(Core I7)

2015 Up to 4200 32 KB / core 32 KB / core
256 KB / Core
(8 M L3 cache)

Cache Memory Evolution

Cluj-Napoca 25

Evolution of intel IA-32 Microprocessor Cache Memory Systems

2024

• Virtual address space, i.e., space addressable by a program is
determined by ISA

• Main memory size  disk size  virtual address space size

• Virtual memory is organized in fixed-size (power of 2, typically at
least 4 KB) blocks, called pages

• Physical memory is considered a collection of pages of the same
size

• The unit of data transfer between disk and physical memory is a
page

• Advantages of Virtual Memory:
– Illusion of having more physical memory

– Program reallocation

– Protection

Virtual Memory

Cluj-Napoca 26

2024

• Main Memory acts like a cache for the secondary memory (disk)

• Pages: virtual memory blocks

• Page faults
– The data is not in main memory retrieve it from disk

– Huge miss penalty, thus pages should be fairly large (e.g., 4 KB)

– Reducing page faults is important  LRU is worth the price

– Can handle the faults in software instead of hardware

– Overhead is small compared to the disk access time

– Using write-through is too expensive so write back is used

Virtual Memory

Cluj-Napoca 27

2024

Virtual Memory

Cluj-Napoca 28

The logical program – contiguous virtual address space: four pages A, B, C, and D. [1]

2024

Virtual Memory

Cluj-Napoca 29

The actual location of the blocks is in physical main memory and on the disk [1]

Mapping of pages from a virtual address to a physical address or disk address:
• Main memory acts as cache for secondary storage (disk)

Physical page can be shared
by 2 virtual addresses to
share data or code.

Example: OS code shared by
more programs

2024

• Translation from virtual address (VA) to physical address (PA)

Virtual Memory – Address Translation

Cluj-Napoca 30

VA – PA translation with Page Tables

VA – PA translation with Page Tables + TLB

The number of bits in the page
offset field determine the page
size (4 KB)

Usually, number of virtual pages
> number of physical pages

[1]

2024

Virtual Memory – Page Table

Cluj-Napoca 31

The mapping of a virtual address to a physical address via a page table [1]
Page table maps virtual page to either physical page or disk page

How Do You Place the Page and Find it Again?
• Locate pages by an index table: page table
• Each program has its own page table.
• A register (page table register) points to the start of the page table.
• The Page Table Implements Virtual to Physical Address Translation

2024

Virtual Memory – Page Table

Cluj-Napoca 32

Address translation using the Page Table [1]
page size 4 KB, virtual address space 4 GB, physical memory 1 GB,

virtual page number = 20 bits, physical page number = 18 bits

To avoid large page table sizes:
• Each program has its own page table.
• Page table register points to start of program’s page table.
• Other techniques – multiple-level page tables, hashing virtual address, etc.

2024

• Where to Place the Requested Pages? (in main memory)
– If some pages are empty, use them

– If all pages in main memory are in use, choose a page to replace it

– LRU replacement (least recently used)

– Replaced pages are written to swap space on the disk

• Making Address Translation Fast: TLB (translation look aside buffer)
– Address translation mechanism – Slow

– Two cycle memory access, the page tables are stored in main memory.

– One memory access to obtain the physical address,

– Second access to get the data

– TLB – cache for recently used Page Table Entries

Virtual Memory

Cluj-Napoca 33

2024

Virtual Memory – TLB

Cluj-Napoca 34

Translation with TLB: TLB – fully associative cache [1]

2024

Virtual Memory – TLB

Cluj-Napoca 35

Fully associative TLB [1]
Implemented as a direct mapped cache

Data read – 16 words in a block

On a page reference, look up the
virtual page number in the TLB

If TLB hit:
• Get the physical page number
• Turn on the reference bit
• Turn on the dirty bit if write

If TLB miss:
• Look up the page table
• If miss again then true page

fault

TLB, Typical values:
• 16 – 512 entries
• Miss-rate: 0.01% – 1%.
• Miss-penalty: 10 – 100 cycles

2024

• A CPU generates 32-bit addresses for a byte addressable memory.
Design an 8 KB cache memory for this CPU (8 KB is the cache size
only for the data; it does not include the tag). The block size is 32
bytes. Show the block diagram, and the address decoding for
– direct mapped cache memory

– 4-way set associative cache memory

Problems – Homework

Cluj-Napoca 36

2024

1. D. A. Patterson and J. L. Hennessy, “Computer Organization and
Design: A Quantitative Approach”, 5th edition, ed. Morgan-
Kaufmann, 2011.

2. D. A. Patterson, J. L. Hennessy, “Computer Organization and
Design: The Hardware/Software Interface”, 5th edition, ed.
Morgan–Kaufmann, 2013.

References

Cluj-Napoca 37

