St	ud	ent	Nar	ne:	

Year: _____Group: _

I. Answer the following questions using only one word, or one number. Write the answers in the table:

	(4.0 p)
1. MIPS is a 3 address machine (T/F).	
2. A pipeline system is optimized for latency (T/F).	
3. The Microprogrammed control unit uses a PLA to generate the control signals (T/F).	
4. What is the maximum number of R-type instructions that can be encoded in MIPS?	
5. The result of SLT is 1 if the first operand is equal to the second operand (T/F).	
6. The PCSrc control signal is used for writing in the Program Counter (T/F).	
7. What is the logic gate for computing overflow in the MSB in the ALU?	
8. In multi-cycle MIPS, where is the result of the BEQ instruction written (when the branch	
condition is true)?	
9. The branch instruction uses PC relative addressing (T/F).	
10. How many clock cycles are necessary to execute 256 instructions in pipeline MIPS, if	
there are no data dependencies?	
11. Forcing to 0 the control signals in the pipeline is called stalling (T/F).	
12. What is the pipeline register where the RegWrite control signal is coming from?	
13. In pipeline MIPS, using the result before it was written is called	
14. An architecture that dispatches more instructions / clock cycle is called	
15. In which set can one place the data block no. 50 (from main memory) in a 4-way set-	
associative cache memory with 32 blocks?	
16. The data structure used to implement the reorder buffer (ROB) in Speculative Tomasulo	
is a Heap (T/F).	
17. The amount of data transferred between the physical memory and the hard disk is	
called a	
18. The instructions in Speculative Tomasulo always commit in order (T/F).	
19. The bimodal branch prediction uses a branch history table indexed by the lower bits of	
the branch target address (T/F).	
20. In static branch prediction the branch history decides the direction of the branch (T/F).	
T/F) = True or False	·

- (T/F) = True or False
 - II. Design a 32-bit ALU for the following operations: ADD, SUB, AND, OR, NAND, NOR, Negate B, Increment B, Decrement B. Explain how each ALU operation is implemented. Design the 1-bit ALU by using a single adder circuit and then extend it in order to obtain the 32-bit ALU. Draw the schematic with control signals and present a table with the control signal values for the required operations. (1.5 p)
 - III. Modify the multi-cycle MIPS CPU for the following instructions: SWAP (exchange the contents of two registers), SWAPM (exchange the contents of a register with a memory location), BLTZAL (Branch on less than and link). Define the instruction formats, write the RTL Abstract and Concrete for all the required instructions. Draw the modified data-path (all the normal instructions should work). Show the control signals and their values for implementing the required instructions. (2.5 p)
 - IV. A MIPS CPU has the following resources: 1 Integer Unit, 2 FP Add Units, 1 FP MUL Unit, 1 FP DIV Unit; Execution times (clock cycles): Integer Unit 1, FP Add 4, FP MUL 10, FP DIV 40. Identify the hazards and trace the following instructions using the classic Tomasulo Algorithm (draw and fill the table): LD F6, 12(R2); SD F6, 16(R3); MULD F8, F6, F2; ADDD F1, F5, F4; DIVD F8, F1, F6; ADDD F6, F8, F2; ADDD F1, F3, F2
 - A 32-bit CPU generates 32-bit addresses for a byte addressable memory. Design a 64 KB cache memory for this CPU. The block size is 128 bytes. Show the block diagram, and the address decoding for a direct mapped cache memory and a 2-way set associative cache memory. (1.0 p)