



# Proiectarea cu Micro-Procesoare

## Lector: Mihai Negru

# An 3 – Calculatoare și Tehnologia Informației Seria B

## Curs 6: Comunicare Serială

http://users.utcluj.ro/~negrum/

## Dispozitive de Comunicare Serială la µC AVR



- Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART)
  - Comunicare serială sincronă sau asincronă
  - Frecvența (baud rate) variabilă
  - Suportă pachete de date de 5-9 biți, cu sau fară paritate
  - Suportă întreruperi pentru controlul transmisiei
  - Detecția erorilor de transmisie
  - Comunicare între placa de dezvoltare și PC

### Serial Peripheral Interface (SPI)

- Comunicare serială sincronă
- Mod de funcționare full duplex
- Configurare Master sau Slave
- Frecvență de comunicare variabilă
- Se poate folosi pentru conexiune între plăci de dezvoltare, sau între o placă și diferite module PMOD (ex. DAC extern, Serial Flash)

# **Dispozitive de Comunicare Serială la μC AVR**



### Two Wire Serial Interface (TWI)

- Protocol de comunicare complex, folosind doar două fire (clock și data)
- Implementare Atmel a protocolului I2C (Inter Integrated Circuit)
- Controllerul TWI integrat suportă moduri master și slave
- Adresare pe 7 biți
- Suport pentru arbitrare pentru mai multe dispozitive master
- Adresa slave programabilă
- PS2
- CAN
- ...



## Interfete seriale la Arduino





- **UART**: pin 0 (RX) , pin 1 (TX) Utilizați pentru programare!
- **SPI**: pin 10 (SS), pin 11 (MOSI), pin 12 (MISO), pin 13 (SCK).
- TWI(I2C): A4 sau pin SDA, A5 sau

#### Pin Layout identical with UNO







- USART UART cu posibilitate de sincronizare prin semnal de ceas
- UART Interfață pentru comunicare serială asincronă
  - Asincron: intervalul dintre pachetele de date poate fi nedefinit. Destinatarul transmisiei detectează când începe și când se termină un pachet
  - Baud rate (rata de transfer): intervalul de timp dintre biți este fix, și trebuie cunoscut de ambele parți
  - Transmisia și recepția se pot efectua simultan (full duplex).
  - O interfață UART are două semnale:
    - Rx intrare, recepție
    - Tx ieșire, transmisie
  - USART are un semnal în plus, xck (external clock) care poate fi intrare sau iesire, și va sincroniza transmisia și recepția









- Transmisia datelor → pachet (frame)
  - St: 1 bit de start, cu valoare '0'
  - **D**: 5, 6, 7, 8, 9 biți de date
  - **P**: 1 bit de paritate. Paritatea poate fi:
    - Absentă: bitul P nu există
    - Pară (Even)
    - Impară (Odd)
  - Sp: 1, 1.5 sau 2 biți de stop, cu valoare '1'









### Recepția datelor

- 1. Se detectează o tranziție din '1' in '0' pe linia Rx (recepție)
- 2. Se verifică mijlocul intervalului pentru bitul de start. Dacă este '0', se inițiază secvența de recepție, altfel tranziția se consideră zgomot.
- 3. Se verifică mijlocul intervalului pentru biții următori (date, paritate, stop), și se reconstruiește pachetul de date
- 4. Dacă în poziția unde trebuie să fie biții de stop se detectează valoarea zero, se generează eroare de împachetare (**framing error**)
- 5. Dacă paritatea calculată la destinație nu corespunde cu bitul P, se generează eroare de paritate (**parity error**)
- Pentru robustețe, receptorul eșantionează semnalul de intrare la o frecvență de 8-16 ori mai mare decât *baud rate – oversampling*







### • UART și RS232

- Adaptarea nivelelor de tensiune
  - RS232 logic '1' -5... -15 V
  - RS232 logic '0' +5...+15 V

Este nevoie de conversie de la nivelele Logice UART la RS232















Două unități USART: Clock Generator **USARTO si USART1** UBRR[H:L] OSC Generare Baud BAUD RATE GENERATOR SYNC LOGIC PIN XCK CONTROL Transmitter Transmisie TX CONTROL UDR (Transmit) DATA BUS PARITY Arhitectura generală GENERATOR PIN TRANSMIT SHIFT REGISTER TxD CONTROL Receiver CLOCK RX CONTROL RECOVERY DATA PIN RECEIVE SHIFT REGISTER RxD RECOVERY CONTROL PARITY UDR (Receive) Recepție CHECKER Registri de control UCSRA UCSRB UCSRC

lacksquare





• Registrul de control și stare **UCSRnA** 

| Bit           | 7    | 6    | 5     | 4   | 3    | 2    | 1    | 0     | _      |
|---------------|------|------|-------|-----|------|------|------|-------|--------|
|               | RXCn | TXCn | UDREn | FEn | DORn | UPEn | U2Xn | MPCMn | UCSRnA |
| Read/Write    | R    | R/W  | R     | R   | R    | R    | R/W  | R/W   | •      |
| Initial Value | 0    | 0    | 1     | 0   | 0    | 0    | 0    | 0     |        |

- **RXCn** Este '1' cand recepția e completă. Poate genera întrerupere
- **TXCn** Este '1' cand transmisia e completă. Poate genera întrerupere
- UDREn Data Register Empty, semnalează că registrul poate fi scris
- FEn Semnalează eroare de impachetare (Frame Error)
- DORn Data overrun când se detectează un început de recepție înainte ca datele deja recepționate să fie citite din registrul de date
- UPEn Eroare de paritate (Parity Error)
- U2Xn Valoare '1'  $\rightarrow$  Dublare viteză de transmisie USART
- MPCMn Activare mod de comunicare multiprocesor





• Registrul de control și stare **UCSRnB** 

| Bit           | 7      | 6      | 5      | 4     | 3     | 2      | 1     | 0     | _      |
|---------------|--------|--------|--------|-------|-------|--------|-------|-------|--------|
|               | RXCIEn | TXCIEn | UDRIEn | RXENn | TXENn | UCSZn2 | RXB8n | TXB8n | UCSRnB |
| Read/Write    | R/W    | R/W    | R/W    | R/W   | R/W   | R/W    | R     | R/W   | •      |
| Initial Value | 0      | 0      | 0      | 0     | 0     | 0      | 0     | 0     |        |

- RXCIEn Dacă e setat '1', se generează întrerupere la terminarea receptiei
- TXCIEn Dacă e setat '1', se generează întrerupere la terminarea transmisiei
- UDRIEn Dacă e setat '1', se generează întrerupere când registrul de date e gol
- RXEn activare receptie
- **TXEn** activare transmisie
- UCSZn2 combinat cu UCSZn1 si UCSZn0 din USCRnC stabileşte mărimea pachetului
- RXB8n al 9-lea bit receptionat, cand pachetul are 9 biti
- TXB8n al 9-lea bit de transmis, cand pachetul are 9 biti





• Registrul de control și stare **UCSRnC** 

| Bit           | 7   | 6      | 5     | 4     | 3     | 2      | 1      | 0      | _      |
|---------------|-----|--------|-------|-------|-------|--------|--------|--------|--------|
|               | -   | UMSELn | UPMn1 | UPMn0 | USBSn | UCSZn1 | UCSZn0 | UCPOLn | UCSRnC |
| Read/Write    | R/W | R/W    | R/W   | R/W   | R/W   | R/W    | R/W    | R/W    | •      |
| Initial Value | 0   | 0      | 0     | 0     | 0     | 1      | 1      | 0      |        |

- UMSELn Mod asincron '0' sau sincron '1'
- UPMn1 si UPMn0 Selectia modului de paritate
- **USBSn** configurare biti de stop: '0' 1 bit, '1' 2 biți
- UCSZn1:UCSZn0 combinat cu UCSZn2 din UCSRnB → dimensiunea pachetului

| UCSZn2 | UCSZn1 | UCSZn0 | Character Size |      |   |       |                     |  |                      |  |
|--------|--------|--------|----------------|------|---|-------|---------------------|--|----------------------|--|
| 0      | 0      | 0      | 5-bit          |      |   |       |                     |  |                      |  |
| 0      | 0      | 1      | 6-bit          |      |   |       |                     |  |                      |  |
| 0      | 1      | 0      | 7-bit          |      |   |       |                     |  |                      |  |
| 0      | 1      | 1      | 8-bit          | UPMn | 1 | UPMn0 | Parity Mode         |  |                      |  |
| 1      | 0      | 0      | Reserved       | 0    |   | 0     | Disabled            |  |                      |  |
| 1      | 0      | 1      | Reserved       | 0    |   | 1     | Reserved            |  |                      |  |
| 1      | 1      | 0      | Reserved       | 1    | 1 |       | 1 0                 |  | Enabled, Even Parity |  |
| 1      | 1      | 1      | 9-bit          | 1    |   | 1     | Enabled, Odd Parity |  |                      |  |





- Regiștrii de control al frecvenței: **UBRRnH** si **UBRRnL** 
  - Formează împreună valoarea **UBRRn**, de 12 biți

| Bit                                     | 15 14                      |           | 13     | 12                                           | 11                                                | 10      | 9                         | _                                              |                                       |  |  |
|-----------------------------------------|----------------------------|-----------|--------|----------------------------------------------|---------------------------------------------------|---------|---------------------------|------------------------------------------------|---------------------------------------|--|--|
|                                         | -                          | – – – UBR |        |                                              |                                                   |         |                           | 3RRn[11:8]                                     |                                       |  |  |
|                                         |                            |           |        | UBRR                                         | n[7:0]                                            |         |                           |                                                | UBRRnL                                |  |  |
|                                         | 7                          | 6         | 5      | 4                                            | 3                                                 | 2       | 1                         | 0                                              | -                                     |  |  |
| Read/Write                              | R                          | R         | R      | R                                            | R/W                                               | R/W     | R/W                       | R/W                                            |                                       |  |  |
|                                         | R/W                        | R/W       | R/W    | R/W                                          | R/W                                               | R/W     | R/W                       | R/W                                            |                                       |  |  |
| Initial Value                           | 0                          | 0         | 0      | 0                                            | 0                                                 | 0       | 0                         | 0                                              |                                       |  |  |
|                                         | 0                          | 0         | 0      | 0                                            | 0                                                 | 0       | 0                         | 0                                              |                                       |  |  |
|                                         |                            |           |        |                                              |                                                   |         |                           |                                                |                                       |  |  |
| Operating N                             | Mode                       |           | Equati | on for C<br>Baud Ra                          | alculatin<br>te <sup>(1)</sup>                    | g       | Equation<br>U             | n for Ca<br>BRR Val                            | lculating<br>ue                       |  |  |
| Operating M<br>Asynchrono<br>mode (U2Xr | Mode<br>us Norma<br>n = 0) | al        | Equati | on for C<br>Baud Ra<br>f<br><del>16(UE</del> | alculatin<br>te <sup>(1)</sup><br>OSC<br>BRR + 17 | g<br>ī) | Equation<br>UI<br>UBRRn = | n for Ca<br>BRR Val<br>= $\frac{f_{OS}}{16BA}$ | lculating<br>ue<br><u>C</u><br>UD - 1 |  |  |

- Citire date recepționate / scriere date pentru transmis
  - Ambele acțiuni se fac prin registrul UDRn





 Pini comuni cu porturile I/O – Direcția este configurată automat prin activarea recepției și/sau a transmisiei!

| Port Pin | Alternate Function                                   |            |                                                                                                         |                                                                                  |  |  |  |  |  |
|----------|------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|
| PD7      | T2 (Timer/Counter2 Clock Input)                      |            |                                                                                                         |                                                                                  |  |  |  |  |  |
| PD6      | T1 (Timer/Counter1 Clock Input)                      |            |                                                                                                         |                                                                                  |  |  |  |  |  |
| PD5      | XCK1 <sup>(1)</sup> (USART1 External Clock Input/    | Output)    |                                                                                                         |                                                                                  |  |  |  |  |  |
| PD4      | ICP1 (Timer/Counter1 Input Capture Pir               | ו)         |                                                                                                         |                                                                                  |  |  |  |  |  |
| PD3      | INT3/TXD1 <sup>(1)</sup> (External Interrupt3 Input  | or UART1 T | ransmit Pin)                                                                                            | USART1 portul D                                                                  |  |  |  |  |  |
| PD2      | INT2/RXD1 <sup>(1)</sup> (External Interrupt2 Input  | or UART1 F | Receive Pin)                                                                                            |                                                                                  |  |  |  |  |  |
| PD1      | INT1/SDA <sup>(1)</sup> (External Interrupt1 Input c | Dant Din   | Alternate Function                                                                                      |                                                                                  |  |  |  |  |  |
| PD0      | INT0/SCL <sup>(1)</sup> (External Interrupt0 Input c |            |                                                                                                         |                                                                                  |  |  |  |  |  |
|          |                                                      | PE7        | IN17/ICP3 <sup>(1)</sup> (External Interro                                                              | upt 7 Input or Timer/Counter3 Input Capture Pin)                                 |  |  |  |  |  |
|          |                                                      | PE6        | INT6/ T3 <sup>(1)</sup> (External Interrup                                                              | T6/ T3 <sup>(1)</sup> (External Interrupt 6 Input or Timer/Counter3 Clock Input) |  |  |  |  |  |
|          |                                                      | PE5        | INT5/OC3C <sup>(1)</sup> (External Inter<br>for Timer/Counter3)                                         | rupt 5 Input or Output Compare and PWM Output C                                  |  |  |  |  |  |
|          |                                                      | PE4        | INT4/OC3B <sup>(1)</sup> (External Interrupt 4 Input or Output Compare and PWM Output B Timer/Counter3) |                                                                                  |  |  |  |  |  |
|          |                                                      | PE3        | AIN1/OC3A <sup>(1)</sup> (Analog Com<br>Output A for Timer/Counter3                                     | nparator Negative Input or Output Compare and PWM<br>3)                          |  |  |  |  |  |
|          |                                                      | PE2        | AIN0/XCK0 <sup>(1)</sup> (Analog Comparator Positive Input or USART0 external clock input/output)       |                                                                                  |  |  |  |  |  |
|          | LISARTO portul E                                     | PE1        | PDO/TXD0 (Programming Data Output or UART0 Transmit Pin)                                                |                                                                                  |  |  |  |  |  |
|          | OSARTU, puttul E                                     | PE0        | PDI/RXD0 (Programming Da                                                                                | ta Input or UART0 Receive Pin)                                                   |  |  |  |  |  |





- Exemplu: comunicare între ATmega2560 si PC ECHO simplu
- Necesar: cablu serial, modul PMOD RS232
- 1. Configurare

Baud: 9600 Marime pachet: 8 biti Biți de stop: 2 Paritate: fără paritate

$$UBRRn = \frac{J_{OSC}}{16BAUD} - 1$$
$$f_{osc} = 16 \text{ MHz} \rightarrow 16.000.000$$

### UBRRn = 103

- 2. Așteptare recepție caracter
  - Verificare RXCn din UCSRnA, așteptare până devine 1
- 3. Citire caracter recepționat, din UDRn
- 4. Scriere caracter de transmis, în UDRn
- 5. Așteaptă transmisie caracter
  - Verificare TXCn din UCSRnA, așteptare până devine 1
- 6. Salt la 2





#### • **Exemplu:** comunicare între ATmega64 si PC – ECHO simplu

| <b>ldi</b> r16, 0b <b>00011000</b> | ; activare <mark>Rx</mark> si Tx                         |
|------------------------------------|----------------------------------------------------------|
| sts UCSR1B,r16                     |                                                          |
| <b>ldi</b> r16, 0b <b>00001110</b> | ; dimensiune frame 8 biti, fara paritate, 2 biti de stop |
| sts UCSR1C,r16                     |                                                          |
| <b>ldi</b> r16, 103                | ; Baud rate calculat, incape in primii 8 biti            |
| <b>ldi</b> r17, 0                  | ; Bitii superiori la UBRR sunt zero                      |
| sts UBRR1H, r17                    |                                                          |
| sts UBRR1L, r16                    |                                                          |
| mainloop:                          |                                                          |
| recloop:                           |                                                          |
| lds r20, UCSR1A                    |                                                          |
| <b>sbrs</b> r20, 7                 | ; bitul 7 din UCSR1A – receptie completa                 |
| <b>rjmp</b> recloop                |                                                          |
| <b>lds</b> r16, <b>UDR1</b>        | ; citire date receptionate                               |
| sts UDR1,r16                       | ; scriere date spre transmisie                           |
| txloop:                            |                                                          |
| <b>lds</b> r20, <b>UCSR1A</b>      | ; asteptare terminare transmisie                         |
| <b>sbrs</b> r20, 5                 |                                                          |
| <b>rjmp</b> txloop                 |                                                          |
| <b>rjmp</b> mainloop               |                                                          |





- Toate placile Arduino au cel putin un port serial (port UART sau USART), accesibil prin obiectul C++ Serial
- Comunicare μC ↔ PC prin conexiunea USB, folosind adaptorul USB-UART integrat pe placă – comunicare folosită şi pentru programarea plăcii!!
- Comunicarea între plăci folosind pinii digitali 0 (RX) și 1 (TX) nerecomandată. Pentru a putea folosi aceste tipuri de comunicație, nu folosiți pinii 0 și 1 pentru operații generale de I/O digital !!!
- Placa Arduino MEGA are trei porturi seriale suplimentare: UART1 folosește pinii 19 (RX) și 18 (TX), UART2 pinii 17 (RX) și 16 (TX), UART3 pinii 15 (RX) și 14 (TX)
- Pentru a comunica cu un PC, este nevoie de un adaptor USB-UART extern, sau un adaptor UART-RS232, deoarece aceste interfețe nu folosesc adaptorul integrat pe placa
- Pentru a comunica cu un dispozitiv care folosește interfața serială cu nivele logice TTL, se conectează pinul TX al plăcii la pinul RX al dispozitivului, pinul RX al plăcii la pinul TX al dispozitivului, și pinii de masă (GND) împreuna





- Biblioteca Serial integrată în mediul de dezvoltare Arduino (<u>http://arduino.cc/en/Reference/Serial</u>) – folosită pentru facilitarea comunicației prin interfețele seriale disponibile.
- Metodele clasei **Serial** (selectie):
- Serial.begin(speed) configurează viteza de transmisie (speed) și formatul implicit de date (8 data bits, no parity, one stop bit)
- Serial.begin(speed, config) configurează viteza (speed) + selectează un alt format al datelor (config): SERIAL\_8N1 (implicit), SERIAL\_7E2, SERIAL\_5O1
- Serial.print(val) trimite valoarea val ca un şir de caractere citibil de catre utilizator (ex: Serial.print(20) va trimite caracterele '2' şi '0')
- Serial.print(val, format) format specifică baza de numerație folosită (BIN, OCT, DEC, HEX. Pentru numere în virgulă mobilă, format specifică numărul de zecimale folosit.
- **Serial.println** Trimite datele + \r\n (ASCII 13 + ASCII 10)
- Example:

Serial.print(78) transmite "78" Serial.print(1.23456) transmite "1.23" Serial.print("Hello") transmite "Hello" Serial.print(78, BIN) transmite "1001110"

Serial.println(1.23456, 4) transmite "1.2346"





- byte IncomingByte = Serial.read() citeşte un byte prin interfaţa serială
- int NoOfBytesSent = Serial.write(data) scrie date în format binar prin interfaţa serială. Datele se pot scrie ca un byte (val) sau ca un şir de octeţi specificat ca un string (str) sau ca un şir buf, de lungime specificată len (buf, len)
- Serial.flush() aşteaptă până când transmisia datelor pe interfaţa serială este completă.
- int NoOfBytes = Serial.available() Returnează numărul de octeți disponibili pentru a fi citiți prin interfața serială. Datele sunt deja primite și stocate într-o zonă de memorie buffer (capacitate maximă 64 octeți)
- serialEvent() funcție definită de utilizator, care este apelată automat când există date disponibile in zona buffer. Folosiți Serial.read() în această funcție, pentru a citi aceste date.
- serialEvent1(), serialEvent2(), serialEvent3() Pentru Arduino Mega, funcții care se apelează automat pentru celelalte interfețe seriale.





#### **Exemplul 1:**

```
void setup() {
    Serial.begin(9600);
    Serial.println("Hello");
}
void loop() {}
```

// deschide portul serial, configureaza viteza la 9600 bps

#### Exemplul 2 (doar pentru Arduino Mega):

```
// Arduino Mega foloseste patru porturi seriale (Serial, Serial1, Serial2, Serial3),
// se pot configura cu viteze diferite:
void setup(){
   Serial.begin(9600);
   Serial1.begin(38400);
   Serial2.begin(19200);
   Serial3.begin(4800);
```

```
Serial.println("Hello Computer");
Serial1.println("Hello Serial 1");
Serial2.println("Hello Serial 2");
Serial3.println("Hello Serial 3");
}
void loop() {}
```





**Comunicație**  $\mu C \leftrightarrow PC$ , Exemplul 3 – recepționează o cifră (caracter de la '0' la '9') și modifică starea unui LED proporțional cu cifra citită

```
const int ledPin = 13; // pin LED
                 // rata de modificare a starii
int blinkRate=0;
void setup()
 Serial.begin(9600); // initializare port serial
 pinMode(ledPin, OUTPUT); // configurare pin LED ca iesire
void loop() {
 if (Serial.available()) // Verifica dacă avem date de citit
      char ch = Serial.read(); // citeste caracterul receptionat
      If( isDigit(ch) ) // Este cifră ?
         blinkRate = (ch - '0'); // Se converteste in valoare numerica
         blinkRate = blinkRate * 100; // Rata = 100ms * cifra citita
 blink();
```





#### Exemplul 3 – cont.

```
// modifica stare LED pe baza ratei calculate
void blink()
{
    digitalWrite(ledPin,HIGH);
    delay(blinkRate); // intarzierea calculata
    digitalWrite(ledPin,LOW);
    delay(blinkRate);
}
```

- Pentru a utiliza acest exemplu:
- Folositi Serial Monitor, inclus in mediul Arduino, activându-l din meniul Tools sau apăsând <CTRL+SHIFT+M>)
- Selectați aceeași viteză cu cea pe care ați configurat-o apelând Serial.begin()
- Tastați cifre, și apăsati butonul "Send".





#### Exemplul 4 – exemplul 3 modificat să folosească serialEvent()

```
void loop()
 blink();
}
void serialEvent() // functia se apeleaza automat, cand exista date de citit
{
 while(Serial.available()) // cat timp exista date disponibile
   char ch = Serial.read(); // acestea se citesc
   Serial.write(ch); // echo – trimitem datele inapoi pentru verificare
   if( isDigit(ch) ) // e cifra ?
     blinkRate = (ch - '0'); // convertire la valoare numerica
     blinkRate = blinkRate * 100; // calcul timp de intarziere
```





- În afara interfețelor seriale hardware, Arduino permite comunicarea serială și pe alți pini digitali, realizând procesul de serializare / de-serializare a datelor prin program
- Se folosește biblioteca SoftwareSerial, inclusă în pachetul software Arduino (necesită includerea header-ului softwareserial.h)
- Pinul de receptie (RX) trebuie conectat la un pin digital care suporta întreruperi externe declanşate prin schimbarea stării acestuia:
  - La Arduino Mega, acesti pini sunt: 10, 11, 12, 13, 14, 15, 50, 51, 52, 53, A8 (62), A9 (63), A10 (64), A11 (65), A12 (66), A13 (67), A14 (68), A15 (69)
- Se pot crea mai multe obiecte C++ de tip SoftwareSerial, dar numai unul poate fi activ la un moment dat
- Crearea unui obiect trebuie specificați pinii de recepție și transmisie:

#### SoftwareSerial mySerial = SoftwareSerial(rxPin, txPin)

• Sunt implementate functiile **begin**, **read**, **write**, **print**, **println**, care se folosesc în același mod ca în cazul interfețelor seriale hardware





- Exemplu: comunicarea folosind două interfețe seriale, una hardware, conectată la PC, și una software, conectată la un alt dispozitiv compatibil UART
  - Arduino joaca rolul de releu de comunicație: ce primește pe o interfată, transmite pe cealaltă.

```
#include <SoftwareSerial.h>
SoftwareSerial mySerial(10, 11); // Interfata software foloseste pin 10 pt RX, pin 11 pt TX
```

```
void setup()
Serial.begin(9600);
                               // Configurare interfata hardware
mySerial.begin(9600);
                               // Configurare interfata software
void loop()
 if (mySerial.available())
  Serial.write(mySerial.read()); // citire de pe interfata software, transmisie prin cea hardware
 if (Serial.available())
  mySerial.write(Serial.read()); // citire de pe interfata hardware, transmisie prin cea software
```

}

}

{





- Exemplu: comunicarea folosind două interfețe seriale, una hardware, conectată la PC, și una software, conectată la un alt dispozitiv compatibil UART
- Posibilă utilizare a programului anterior: vizualizarea datelor transmise de către un dispozitiv compatibil UART pe terminalul Serial Monitor
- Exemplu: receptor GPS Digilent PMod GPS:



```
$GPGGA,064951.000,2307.1256,N,12016.4438,E,1,8,0.
95,39.9,M,17.8,M,,*65
$GPGSA,A,3,29,21,26,15,18,09,06,10,,,,2.32,0.95,
2.11*00
$GPGSV,3,1,09,29,36,029,42,21,46,314,43,26,44,020
,43,15,21,321,39*7D
$GPRMC,064951.000,A,2307.1256,N,12016.4438,E,0.03
,165.48,260406,3.05,W,A*55
$GPVTG,165.48,T,,M,0.03,N,0.06,K,A*37
```



### **Codurile ASCII**



| Dec | H> | Oct | Char |                          | Dec | Hx | Oct | Html           | Chr          | Dec | Hx | Oct | Html          | Chr      | Dec | Hx | Oct | Html Ch        | <u>ır</u> |
|-----|----|-----|------|--------------------------|-----|----|-----|----------------|--------------|-----|----|-----|---------------|----------|-----|----|-----|----------------|-----------|
| 0   | 0  | 000 | NUL  | (null)                   | 32  | 20 | 040 | <b>⊛#</b> 32;  | Space        | 64  | 40 | 100 | «#64;         | 0        | 96  | 60 | 140 | <b>`</b>       | 2         |
| 1   | 1  | 001 | SOH  | (start of heading)       | 33  | 21 | 041 | <b>∉#33;</b>   | 1.00         | 65  | 41 | 101 | <b>A</b>      | A        | 97  | 61 | 141 | <b></b> ∉#97;  | a         |
| 2   | 2  | 002 | STX  | (start of text)          | 34  | 22 | 042 | <b>"</b>       | **           | 66  | 42 | 102 | <b>B</b>      | в        | 98  | 62 | 142 | <b>b</b>       | b         |
| 3   | 3  | 003 | ETX  | (end of text)            | 35  | 23 | 043 | <b>∉#35;</b>   | #            | 67  | 43 | 103 | <b></b> ∉#67; | С        | 99  | 63 | 143 | <b></b> %#99;  | С         |
| 4   | 4  | 004 | EOT  | (end of transmission)    | 36  | 24 | 044 | <b>∝#</b> 36;  | ę.           | 68  | 44 | 104 | <b></b> 4#68; | D        | 100 | 64 | 144 | <b>∝#100;</b>  | d         |
| 5   | 5  | 005 | ENQ  | (enquiry)                | 37  | 25 | 045 | <b>∝#</b> 37;  | *            | 69  | 45 | 105 | <b>∝#69;</b>  | Е        | 101 | 65 | 145 | e              | e         |
| 6   | 6  | 006 | ACK  | (acknowledge)            | 38  | 26 | 046 | <b></b> ∉38;   | 6            | 70  | 46 | 106 | <b></b> ∉70;  | F        | 102 | 66 | 146 | f              | f         |
| - 7 | 7  | 007 | BEL  | (bell)                   | 39  | 27 | 047 | <b></b> ∉39;   | 1            | 71  | 47 | 107 | <b>∝#71;</b>  | G        | 103 | 67 | 147 | <b>∝#103;</b>  | g         |
| 8   | 8  | 010 | BS   | (backspace)              | 40  | 28 | 050 | <b>∝#40;</b>   | (            | 72  | 48 | 110 | H             | н        | 104 | 68 | 150 | h              | h         |
| 9   | 9  | 011 | TAB  | (horizontal tab)         | 41  | 29 | 051 | )              | )            | 73  | 49 | 111 | <b>∉</b> #73; | I        | 105 | 69 | 151 | i              | i         |
| 10  | A  | 012 | LF   | (NL line feed, new line) | 42  | 2A | 052 | <b>€#42;</b>   | *            | 74  | 4A | 112 | «#74;         | J        | 106 | 6A | 152 | j              | Ĵ         |
| 11  | В  | 013 | VT   | (vertical tab)           | 43  | 2B | 053 | +              | +            | 75  | 4B | 113 | ∝#75;         | K        | 107 | 6B | 153 | k              | k         |
| 12  | С  | 014 | FF   | (NP form feed, new page) | 44  | 2C | 054 | a#44;          | 1.           | 76  | 4C | 114 | L             | L        | 108 | 6C | 154 | <b></b> ‰#108; | 1         |
| 13  | D  | 015 | CR   | (carriage return)        | 45  | 2D | 055 | -              | - N          | 77  | 4D | 115 | ∝#77;         | М        | 109 | 6D | 155 | m              | m         |
| 14  | Ε  | 016 | S0   | (shift out)              | 46  | 2E | 056 | .              | $\mathbf{x}$ | 78  | 4E | 116 | <b></b> ∉78;  | Ν        | 110 | 6E | 156 | n              | n         |
| 15  | F  | 017 | SI   | (shift in)               | 47  | 2F | 057 | 6#47;          | $\sim$       | 79  | 4F | 117 | ∝#79;         | 0        | 111 | 6F | 157 | o              | 0         |
| 16  | 10 | 020 | DLE  | (data link escape)       | 48  | 30 | 060 | <b>0</b>       | 0            | 80  | 50 | 120 | <b>∝#80;</b>  | Р        | 112 | 70 | 160 | p              | р         |
| 17  | 11 | 021 | DC1  | (device control 1)       | 49  | 31 | 061 | ¢#49;          | 1            | 81  | 51 | 121 | <b>∝#81;</b>  | Q        | 113 | 71 | 161 | <b>∝#113;</b>  | q         |
| 18  | 12 | 022 | DC2  | (device control 2)       | 50  | 32 | 062 | <b>∝#50;</b>   | 2            | 82  | 52 | 122 | <b>∝#</b> 82; | R        | 114 | 72 | 162 | r              | r         |
| 19  | 13 | 023 | DC3  | (device control 3)       | 51  | 33 | 063 | 3              | 3            | 83  | 53 | 123 | <b>∝#83;</b>  | s        | 115 | 73 | 163 | s              | S         |
| 20  | 14 | 024 | DC4  | (device control 4)       | 52  | 34 | 064 | & <b>#</b> 52; | 4            | 84  | 54 | 124 | <b>∝#84;</b>  | Т        | 116 | 74 | 164 | t              | t         |
| 21  | 15 | 025 | NAK  | (negative acknowledge)   | 53  | 35 | 065 | <b>∝#53;</b>   | 5            | 85  | 55 | 125 | <b></b> ∉85;  | U        | 117 | 75 | 165 | u              | u         |
| 22  | 16 | 026 | SYN  | (synchronous idle)       | 54  | 36 | 066 | ∝#54;          | 6            | 86  | 56 | 126 | <b></b> ∉86;  | v        | 118 | 76 | 166 | <b>€#118;</b>  | v         |
| 23  | 17 | 027 | ETB  | (end of trans. block)    | 55  | 37 | 067 | 7              | 7            | 87  | 57 | 127 | W             | W        | 119 | 77 | 167 | w              | w         |
| 24  | 18 | 030 | CAN  | (cancel)                 | 56  | 38 | 070 | 8              | 8            | 88  | 58 | 130 | <b>X</b>      | x        | 120 | 78 | 170 | x              | х         |
| 25  | 19 | 031 | EM   | (end of medium)          | 57  | 39 | 071 | 9              | 9            | 89  | 59 | 131 | <b>Y</b>      | Y        | 121 | 79 | 171 | y              | Y         |
| 26  | 1A | 032 | SUB  | (substitute)             | 58  | ЗA | 072 | <b>∝#58;</b>   | ÷            | 90  | 5A | 132 | <b></b> ∉#90; | Z        | 122 | 7A | 172 | <b>∝#122;</b>  | z         |
| 27  | 1B | 033 | ESC  | (escape)                 | 59  | ЗB | 073 | <b>∝#59;</b>   | 2 - C        | 91  | 5B | 133 | <b>∝#91;</b>  | [        | 123 | 7B | 173 | <b>∝#123;</b>  | -{        |
| 28  | 1C | 034 | FS   | (file separator)         | 60  | ЗC | 074 | <b>∝#60;</b>   | <            | 92  | 5C | 134 | <b></b> ∉#92; | 1        | 124 | 7C | 174 | <b>∝#124;</b>  |           |
| 29  | 1D | 035 | GS   | (group separator)        | 61  | ЗD | 075 | l;            | =            | 93  | 5D | 135 | «#93;         | ]        | 125 | 7D | 175 | }              | }         |
| 30  | lE | 036 | RS   | (record separator)       | 62  | ЗE | 076 | >              | >            | 94  | 5E | 136 | «#94;         | <u>^</u> | 126 | 7E | 176 | ~              | ĩ         |
| 31  | 1F | 037 | US   | (unit separator)         | 63  | ЗF | 077 | <b>?</b>       | 2            | 95  | 5F | 137 | _             | _        | 127 | 7F | 177 |                | DEI       |

Source: www.LookupTables.com





| 128 | Ç | 144 | É                | 161 | í   | 177 |    | 193 | Т      | 209 | ∓        | 225 | В       | 241 | ±            |
|-----|---|-----|------------------|-----|-----|-----|----|-----|--------|-----|----------|-----|---------|-----|--------------|
| 129 | ü | 145 | æ                | 162 | ó   | 178 |    | 194 | т      | 210 | π        | 226 | Г       | 242 | ≥            |
| 130 | é | 146 | Æ                | 163 | ú   | 179 |    | 195 | F      | 211 | Ш.       | 227 | π       | 243 | $\leq$       |
| 131 | â | 147 | ô                | 164 | ñ   | 180 | H  | 196 | -      | 212 | F        | 228 | Σ       | 244 | ſ            |
| 132 | ä | 148 | ö                | 165 | Ñ   | 181 | ŧ  | 197 | +      | 213 | F        | 229 | σ       | 245 | J.,          |
| 133 | à | 149 | ò                | 166 | •   | 182 | ┨  | 198 | F      | 214 | Г        | 230 | μ       | 246 | ÷            |
| 134 | å | 150 | û                | 167 | ۰   | 183 | п  | 199 | -⊪     | 215 | <b>+</b> | 231 | τ       | 247 | æ            |
| 135 | ç | 151 | ù                | 168 | 8   | 184 | ۹. | 200 | L      | 216 | ŧ        | 232 | Φ       | 248 | ۰            |
| 136 | ê | 152 | _                | 169 | _   | 185 | -  | 201 | F      | 217 | Ц        | 233 | ۲       | 249 |              |
| 137 | ë | 153 | Ö                | 170 | -   | 186 |    | 202 | Ш      | 218 | Г        | 234 | Ω       | 250 |              |
| 138 | è | 154 | Ü                | 171 | 1/2 | 187 | 7  | 203 | ٦F     | 219 |          | 235 | δ       | 251 | $\mathbf{A}$ |
| 139 | ï | 156 | £                | 172 | 1⁄4 | 188 | IJ | 204 | ŀ      | 220 |          | 236 | 60      | 252 | _            |
| 140 | î | 157 | ¥                | 173 | i   | 189 | Ш  | 205 | =      | 221 | 1.       | 237 | ф       | 253 | 2            |
| 141 | ì | 158 | $\sum_{i=1}^{n}$ | 174 | «   | 190 | Ч  | 206 | ₽<br>₽ | 222 | 1        | 238 | ε       | 254 |              |
| 142 | Ä | 159 | 1                | 175 | »   | 191 | ٦  | 207 | ≞      | 223 |          | 239 | $\circ$ | 255 |              |
| 143 | Å | 160 | á                | 176 |     | 192 | L  | 208 | ш      | 224 | α        | 240 | ≡       |     |              |
|     |   |     |                  |     |     |     |    |     |        |     |          |     |         |     |              |

Source: www.LookupTables.com





- 1. Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V datasheet
- 2. Atmel Atmega64 datasheet
- 3. Atmel Atmega2560 datasheet