
Design with Microprocessors
Lecture 13

Bluetooth

Year 3 CS

Academic year 2024/2025

1st Semester

Lecturer: Radu Dănescu

• A short-range wireless communication technology that enables
devices to exchange data over short distances.

• Developed by Ericsson in 1994.

• Named after Harald "Bluetooth” Gormsson, a Viking king who
unified Denmark and Norway.

• Key Features:
– Low power consumption.

– Operates in the unlicensed 2.4 GHz band.

– Supports both data and voice communication.

Bluetooth

• BT is a very popular wireless connection solution!

• Entertainment: audio devices (speakers, headphones), toys, controllers

• Vehicle to smartphone connection: Android Auto, Apple CarPlay

• Medica devices: health monitors, insulin pumps, …

Bluetooth devices

• Bluetooth uses Frequency-Hopping Spread Spectrum (FHSS).

• The available 2.4 GHz band is divided into multiple channels.

• Classic Bluetooth (BR/EDR): 79 channels, each 1 MHz wide (in most countries).

• Bluetooth Low Energy (BLE): 40 channels, each 2 MHz wide.

• Devices "hop" between these channels during communication, switching
frequencies up to 1,600 times per second.

Bluetooth technology

Bluetooth technology

• Frequency hopping was designed for military use, to prevent interference
(jamming)

• Relies on both sender and receiver using the same pattern of shifting
frequencies

Antheil and Lamarr

Bluetooth classic and Bluetooth Low Energy

HC-05 Bluetooth Module

Technical Specifications

Power voltage: 3.6 - 6V

Power consumption: maxim 30mA

Voltage level for logic 1: 3.3V - can work with Arduino and with ESP32

UART Serial Communication

Baudrate: 9600 - 460800 bps

Transmission range: up to 10m

Default pairing PIN : 1234

https://ardushop.ro/ro/comunicatie/1582-
modul-bluetooth-hc-05-transciever-serial-
6427854023520.html

HC-05 Bluetooth Module with Arduino

void setup()
{
Serial.begin (9600); // Serial 0 interface for PC
Serial1.begin (9600); // Serial 1 interface for Bluetooth module
}

void loop()
{
if (Serial1.available()) // Read from Bluetooth and send to PC

Serial.write(Serial1.read());

if (Serial.available()) // Read from PC and send to Bluetooth
Serial1.write(Serial.read());

}

HC-05 Bluetooth Module with Arduino

void setup()
{
Serial.begin (9600); // Serial 0 interface for PC
Serial1.begin (38400); // Serial 1 interface for Bluetooth module - default BAUD in config mode
}

void loop()
{
if (Serial1.available()) // Read from Bluetooth and send to PC

Serial.write(Serial1.read());
if (Serial.available()) // Read from PC and send to Bluetooth

Serial1.write(Serial.read());
}

Connect ‘Key’
or ‘En’ to VCC

HC-05 Bluetooth Module with Arduino

Use ‘Serial Monitor’ or any other terminal to send commands to HC-05 for configuration
Set line endings to Both NL & CR (Newline and Carriage Return)

AT+UART=<baud_rate>,<stop_bits>,<parity>

AT+UART=9600,1,0
9600 Baud, 1 stop bit, no parity

AT+ROLE=<role>

AT+ROLE=0
0 - slave, 1 - master

AT+NAME=<new_name>

AT+NAME=DMP_BT_07

AT+ORGL

Restores factory settings

After sending the AT command, the device should respond with ‘OK’ if no error occurred.

HC-05 Bluetooth Module with Arduino

https://howtomechatronics.com/tutorials/arduino/arduino-and-hc-05-bluetooth-module-
tutorial/

Use a voltage divider, it’s safer!

ESP32 Bluetooth

- ESP32 includes Classic Bluetooth, and Low Energy Bluetooth (BLE)
- BT can be used to communicate between ESP32 and a PC/SmartPhone (ESP32

as a slave device), or it can be used to communicate with other BT slaves, such
as another ESP32 (ESP32 as a master device)

- Wi-Fi and Bluetooth share the same 2.4 GHz radio. When both are active, they
use time-division multiplexing to share the RF resource. This may slightly
reduce the throughput of Wi-Fi or Bluetooth depending on usage.

https://deepbluembedded.com/esp32-bluetooth-classic-with-arduino-complete-guide/

ESP32 Bluetooth - master/slave example

- One ESP32 is used as BT master, and one as BT slave
- The master will seek to connect to the slave - it must know the name or the

address of the slave and the pairing PIN
- Each ESP32 acts as a transceiver, sending data received from the PC to

Bluetooth, and sending the data received from Bluetooth to the PC

BT Master BT Slave

ESP32 Bluetooth - code for slave

#include "BluetoothSerial.h"

BluetoothSerial SerialBT;

void setup() {

Serial.begin(115200);

SerialBT.begin(” ESP32-BT-Slave");

SerialBT.setPin(“1234”);

}

void loop()

{

if (SerialBT.available()) // Read from Bluetooth and send to PC

Serial.write(SerialBT.read());

if (Serial.available()) // Read from PC and send to Bluetooth

SerialBT.write(Serial.read());

}

ESP32 Bluetooth - code for master

#include "BluetoothSerial.h"

String myName = "ESP32-BT-Master";

String slaveName = "ESP32-BT-Slave";

const char *pin = "1234";

BluetoothSerial SerialBT;

void setup() {

bool connected;

Serial.begin(115200);

SerialBT.begin(myName, true);

SerialBT.setPin(pin);

connected = SerialBT.connect(slaveName);

if(connected) {

Serial.println("Connected Successfully!");

} else {

while(!SerialBT.connected(10000)) {

Serial.println("Failed to connect.");

}

}

}

void loop() {

if (Serial.available()) {

SerialBT.write(Serial.read());

}

if (SerialBT.available()) {

Serial.write(SerialBT.read());

}

}

ESP32 Bluetooth - search for devices

#include "BluetoothSerial.h"

BluetoothSerial SerialBT;

#define BT_DISCOVER_TIME 10000

static bool btScanSync = true;

void setup() {

Serial.begin(115200);

SerialBT.begin("ESP32test"); //Bluetooth device name

if (btScanSync) {

Serial.println("Starting discover...");

BTScanResults *pResults = SerialBT.discover(BT_DISCOVER_TIME);

if (pResults)

pResults->dump(&Serial);

else

Serial.println("Error on BT Scan, no result!");

}

}

void loop() {

delay(100);

}

ESP32 Bluetooth - search for devices

https://deepbluembedded.com/esp32-bluetooth-classic-with-arduino-complete-guide/

ESP32 Bluetooth - search for devices

Bluetooth Master:
.connect() and .disconnect()

You can connect to a slave using either a name, or a MAC address

connected = SerialBT.connect(SlaveName); // Use Name
connected = SerialBT.connect(SlaveAddress); // Or MAC Address

disconnect() will close the connection to a slave.

// Disconnect() may take up to 10 seconds
if (SerialBT.disconnect()) {

// Disconnected Successfully!
}

ESP32 Bluetooth - event based operation

void BT_EventHandler(esp_spp_cb_event_t event, esp_spp_cb_param_t *param) {

if (event == ESP_SPP_START_EVT) {

Serial.println("Initialized SPP");

}

else if (event == ESP_SPP_SRV_OPEN_EVT) {

Serial.println("Client connected");

}

else if (event == ESP_SPP_CLOSE_EVT) {

Serial.println("Client disconnected");

}

else if (event == ESP_SPP_DATA_IND_EVT) {

Serial.println("Data received");

while (SerialBT.available()) {

int incoming = SerialBT.read();

Serial.println(incoming);

}

}

}

void setup() {

SerialBT.begin(device_name);

SerialBT.setPin(pin);

SerialBT.register_callback(BT_EventHandler); // Attach The CallBack Function

...

}

Using BT connections from PCs

- Once you pair your PC (Windows, Linux, Mac, etc) with your BT device (ESP32,
Arduino with HC-05, others), you will see the device as a regular serial port

- You can use Arduino’s Serial Monitor, or any terminal program, to
communicate with your device

- You can write programs in any language (C++, Python, Java, etc) and open the
port as a regular serial port to send and receive data.

