L

Design with Microprocessors

Lecture 13
Bluetooth

Year 3 CS
Academic year 2024/2025
15t Semester

Lecturer: Radu Danescu

“Ii Bluetooth

* A short-range wireless communication technology that enables
devices to exchange data over short distances.

 Developed by Ericsson in 1994.

* Named after Harald "Bluetooth” Gormsson, a Viking king who
unified Denmark and Norway.

* Key Features:
— Low power consumption.
— Operates in the unlicensed 2.4 GHz band.
— Supports both data and voice communication.

Nordic H Nordic B Blueto Dth

“li Bluetooth devices

BT is avery popular wireless connection solution!
* Entertainment: audio devices (speakers, headphones), toys, controllers
* Vehicle to smartphone connection: Android Auto, Apple CarPlay

* Medica devices: health monitors, insulin pumps, ...

“Ii Bluetooth technology

* Bluetooth uses Frequency-Hopping Spread Spectrum (FHSS).

 The available 2.4 GHz band is divided into multiple channels.

* Classic Bluetooth (BR/EDR): 79 channels, each 1 MHz wide (in most countries).
e Bluetooth Low Energy (BLE): 40 channels, each 2 MHz wide.

 Devices "hop" between these channels during communication, switching
frequencies up to 1,600 times per second.

Signal on a particular
ees—— frequency
> ! I
| . |
C ! I
g | i
g |
o "
] | Il
LL | n
| —
| [—
! I
! | I
; ! I
' ! I
f I
' I . -
" Time to hop Time

Time on

between
channel

channels

Bluetooth technology

Frequency hopping was designed for military use, to prevent interference

Relies on both sender and receiver using the same pattern of shifting

(jamming)
2,292,387

[]
frequencies
Aug. 11, 1942. H. K. MARKEY ET AL
SECRET COMMUNICATION SYSTEM
Filed June 10, 1941 2 Sheets~Sheet 1
L ”. AT ;
Cﬁ- 1 34— osc- 2 A esc- ,23X7 " ' i3 .
\‘ pa\ TN T 2
— 2z Antheil and Lamarr
ANPLIFIER

Z0.
Z J'
S7 MoourAaror

VARIABLE
FReQueNCY
ChARRIER >
OSCILLATOR e —
‘_m 2/
- L - v 0 v o IZ
I 43
ES

misls

2~ I
AL T TTTT)
4 77

7
A zib/c
2" L

ul

i\

“Ii Bluetooth classic and Bluetooth Low Energy

Feature

Bluetooth Classic

Bluetooth Low Energy (BLE)

Data Rate

1 Mbps for BR
2-3 Mbps for EDR

500kbps-1Mbps

RF Bandwidth

2.4 GHz ISM band (2400-2483.5
MHz)

2.4 GHz ISM band (2400-2483.5
MH2z)

Number of Channels

79 Channels each of width 1 MHz

40 Channels each of width 2 MHz

Communication Range

The Same (8m up to 100m)

The Same (8m up to 100m)

Power Consumption

High (up to 1W)

Low (0.01W up to 0.5W)

Device Pairing is Mandatory?

YES

NOT Mandatory

Supported Topologies

Peer-to-peer (1:1)

Peer-to-peer (1:1), Star topology
(many:1), Broadcast (1:many), and
Mesh (many:many)

Modulation Technique

GFSK for BR
8-DPSK or m/4-DQPSK for EDR

GFSK

Latency

356ms

2-16ms (Avg. 9ms)

il[i HC-05 Bluetooth Module

Technical Specifications

Power voltage: 3.6 - 6V

Power consumption: maxim 30mA
Voltage level for logic 1: 3.3V - can work with Arduino and with ESP32
UART Serial Communication
Baudrate: 9600 - 460800 bps
Transmission range: up to 10m

Default pairing PIN : 1234

1.Enable / Key
»2.Vce (+5v)

»3. Ground

https://ardushop.ro/ro/comunicatie/1582-
modul-bluetooth-hc-05-transciever-serial-
6427854023520.html

“Ii HC-05 Bluetooth Module with Arduino

void setup()

{
Serial.begin (9600); // Serial 0 interface for PC

Seriall.begin (9600); // Serial 1 interface for Bluetooth module
}

void loop()

{
if (Seriall.available()) // Read from Bluetooth and send to PC
Serial.write(Seriall.read());

if (Serial.available()) // Read from PC and send to Bluetooth
Seriall.write(Serial.read());

“li HC-05 Bluetooth Module with Arduino

void setup()
{
Serial.begin (9600); // Serial 0 interface for PC

Seriall.begin (38400); // Serial 1 interface for Bluetooth module - default BAUD in config mode
}

void loop()

{

if (Seriall.available()) // Read from Bluetooth and send to PC
Serial.write(Seriall.read());

if (Serial.available()) // Read from PC and send to Bluetooth
Seriall.write(Serial.read());

}

. Connect ‘Key’

q
_”I ‘ or ‘En’ to VCC

“Ii HC-05 Bluetooth Module with Arduino

Use ‘Serial Monitor’ or any other terminal to send commands to HC-05 for configuration
Set line endings to Both NL & CR (Newline and Carriage Return)

AT+UART=<baud_rate>,<stop_bits>,<parity>

AT+UART=9600,1,0
9600 Baud, 1 stop bit, no parity

AT+ROLE=<role>

AT+ROLE=0
0 - slave, 1 - master

AT+NAME=<new_name>
AT+NAME=DMP_BT_07
AT+ORGL
Restores factory settings

After sending the AT command, the device should respond with ‘OK’ if no error occurred.

“li HC-05 Bluetooth Module with Arduino

Use a voltage divider, it’s safer!

https://howtomechatronics.com/tutorials/arduino/arduino-and-hc-05-bluetooth-module-
tutorial/

“Ii ESP32 Bluetooth

DEEPBLUE
MBEDDED

https://deepbluembedded.com/esp32-bluetooth-classic-with-arduino-complete-guide/

- ESP32 includes Classic Bluetooth, and Low Energy Bluetooth (BLE)

- BT can be used to communicate between ESP32 and a PC/SmartPhone (ESP32
as a slave device), or it can be used to communicate with other BT slaves, such
as another ESP32 (ESP32 as a master device)

- Wi-Fi and Bluetooth share the same 2.4 GHz radio. When both are active, they
use time-division multiplexing to share the RF resource. This may slightly
reduce the throughput of Wi-Fi or Bluetooth depending on usage.

ESP32 Bluetooth - master/slave example

BT Master BT Slave

- One ESP32 is used as BT master, and one as BT slave

- The master will seek to connect to the slave - it must know the name or the
address of the slave and the pairing PIN

- Each ESP32 acts as a transceiver, sending data received from the PC to
Bluetooth, and sending the data received from Bluetooth to the PC

‘ , ESP32 Bluetooth - code for slave

#include "BluetoothSerial.h"
BluetoothSerial SerialBT;

void setup () {
Serial.begin (115200);
SerialBT.begin (” ESP32-BT-Slave");
SerialBT.setPin (“1234");

void loop ()

{

if (SerialBT.available()) // Read from Bluetooth and send to PC
Serial.write (SerialBT.read()):;

if (Serial.available()) // Read from PC and send to Bluetooth
SerialBT.write (Serial.read()):;

‘ ' ESP32 Bluetooth - code for master

#include "BluetoothSerial.h"
void loop () {

String myName = "ESP32-BT-Master"; if (Serial.available()) {
String slaveName = "ESP32-BT-Slave"; SerialBT.write (Serial.read())
const char *pin = "1234"; }
if (SerialBT.available()) {
BluetoothSerial SerialBT; Serial.write (SerialBT.read()):;
}
void setup () { }

bool connected;
Serial.begin(115200) ;

SerialBT.begin (myName, true);
SerialBT.setPin (pin);

connected = SerialBT.connect (slaveName) ;
if (connected) {

Serial.println ("Connected Successfully!");
} else {

while (!SerialBT.connected (10000)) {
Serial.println("Failed to connect.");

‘ ' ESP32 Bluetooth - search for devices

#include "BluetoothSerial.h"
BluetoothSerial SerialBT;

#define BT DISCOVER TIME 10000
static bool btScanSync = true;

void setup () {
Serial.begin (115200);
SerialBT.begin ("ESP32test"); //Bluetooth device name

if (btScanSync) {
Serial.println ("Starting discover...");
BTScanResults *pResults = SerialBT.discover (BT DISCOVER TIME) ;
if (pResults)
pResults->dump (&Serial) ;

else
Serial.println ("Error on BT Scan, no result!");

void loop () {
delay (100);

‘ ' ESP32 Bluetooth - search for devices

2 coma

Send

rst:0xl (POWERON BRESET),boot:0xl3 (SPI_FAST FLASH BOOT)

configaip: 0, SPIWP:0xee

clk drv:0x00,qg drv:0x00,d dev:0x00,c30 _drv:0x00,hd drv:0x00,wp drv:0x00
mode:DI0, clock div:l

load:0x3£££0030, lenz1154

load:0x40072000, lens13220

ho 0 tail 12 room 4

load:0x40080400, lenz3023

entry 0x400305=4

The dewvice started, now you can pair it with bluetcooth!

Starting discover...

»» Dump scan results: 2

— 1: Name: G-TiDE, Rddress: 74:09:16:14:56:17, cod: 52433, rssi: -82

- 22 Name: realme 7 Pro, Address: b4:31:61:44:95:12, cod: 58987, rssi: -56
—— Dump finished --

Autoscroll [_] Show timestamp

Mewline

o

115200 baud

i

Clear output

https://deepbluembedded.com/esp32-bluetooth-classic-with-arduino-complete-guide/

“Ii ESP32 Bluetooth - search for devices

Bluetooth Master:
.connect() and .disconnect()

You can connect to a slave using either a name, or a MAC address

connected = SerialBT.connect(SlaveName); // Use Name
connected = SerialBT.connect(SlaveAddress); // Or MAC Address

disconnect() will close the connection to a slave.

// Disconnect() may take up to 10 seconds
if (SerialBT.disconnect()) {
// Disconnected Successfully!

}

“Ii ESP32 Bluetooth - event based operation

{

volid BT EventHandler (esp spp cb event t event, esp spp cb param t *param)
if (event == ESP _SPP START EVT) {
Serial.println("Initialized SPP");

}
else if (event == ESP_SPP SRV _OPEN EVT) {

Serial.println ("Client connected");

}
else if (event == ESP SPP CLOSE EVT) {

Serial.println ("Client disconnected");

}

else if (event == ESP_SPP DATA IND EVT) {
Serial.println ("Data received");
while (SerialBT.available()) {
int incoming = SerialBT.read();

Serial.println (incoming) ;

void setup () {
SerialBT.begin (device name) ;
SerialBT.setPin (pin);

SerialBT.register callback (BT EventHandler); // Attach The CallBack Function

‘ ' Using BT connections from PCs

- Once you pair your PC (Windows, Linux, Mac, etc) with your BT device (ESP32,
Arduino with HC-05, others), you will see the device as a regular serial port

- You can use Arduino’s Serial Monitor, or any terminal program, to
communicate with your device

- You can write programs in any language (C++, Python, Java, etc) and open the
port as a regular serial port to send and receive data.

Fix Encoding & Reload
Manage Libraries... +38 |
~ Serial Monitor 4 #EM
sph
Serial Plotter 4L
tt
t: WiFi101 / WiFiNINA Firmware Updater
t
b ESP32 Sketch Data Upload
r
:r Board: "Arduino Mega or Mega 2560" >
r
Processor: "ATmega2560 (Mega 2560)" >
te Port: "/dev/cu.ESP32test-ESP32SPP" >
:: Get Board Info /dev/cu.Bluetooth-Incoming-Port
v [dev/cu.ESP32test-ESP32SPP
P Programmer
¢ [dev/cu.debug-console

Burn Bootloader
/dev/cu.wlan-debug

int dif = int(millis()-estart);

